Ensembles of Gaussian process latent variable models

Marzieh Ajirak, Yuhao Liu, P. Djurić
{"title":"Ensembles of Gaussian process latent variable models","authors":"Marzieh Ajirak, Yuhao Liu, P. Djurić","doi":"10.23919/eusipco55093.2022.9909949","DOIUrl":null,"url":null,"abstract":"In this paper, we address the classification and dimensionality reduction via ensembles of Gaussian Process Latent Variable Models (GPLVMs). The underlying idea is to have a diverse representation of latent spaces represented by an ensemble of GPLVMs. Each GPLVM of the ensemble has its own projections of the high dimensional observed data on a low dimensional latent space. These models are weighted using importance sampling. Since in practical settings, neither the kernel of the GPLVM nor the dimension of the latent space is known, it is logical to engage an ensemble of GPLVMs based on different kernels and for each of them estimate the dimension of the lower dimensional space. We demonstrate the advantage of working with ensembles for classification and show the performance of dimensionality reduction of our method with numerical simulations.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the classification and dimensionality reduction via ensembles of Gaussian Process Latent Variable Models (GPLVMs). The underlying idea is to have a diverse representation of latent spaces represented by an ensemble of GPLVMs. Each GPLVM of the ensemble has its own projections of the high dimensional observed data on a low dimensional latent space. These models are weighted using importance sampling. Since in practical settings, neither the kernel of the GPLVM nor the dimension of the latent space is known, it is logical to engage an ensemble of GPLVMs based on different kernels and for each of them estimate the dimension of the lower dimensional space. We demonstrate the advantage of working with ensembles for classification and show the performance of dimensionality reduction of our method with numerical simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯过程潜在变量模型的集成
在本文中,我们通过高斯过程潜在变量模型(gplvm)的集成来解决分类和降维问题。其基本思想是拥有由gplvm集合表示的潜在空间的不同表示。集合的每个GPLVM都有自己的高维观测数据在低维潜在空间上的投影。这些模型使用重要性抽样进行加权。由于在实际设置中,既不知道GPLVM的核,也不知道潜在空间的维数,因此,基于不同核的GPLVM集成并为每个GPLVM估计较低维空间的维数是合乎逻辑的。我们通过数值模拟证明了使用集成进行分类的优势,并展示了我们的方法的降维性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1