Impact of Near-Time Information for Prediction on Microeconomic Balanced Time Series Data using Different Machine Learning Methods

Frederik Collin, M. Kies
{"title":"Impact of Near-Time Information for Prediction on Microeconomic Balanced Time Series Data using Different Machine Learning Methods","authors":"Frederik Collin, M. Kies","doi":"10.2139/ssrn.3559645","DOIUrl":null,"url":null,"abstract":"Instead of relying solely on data of a single time series it is possible to use information of parallel, similar time series to improve prediction quality. Our data set consists of microeconomic data of daily store deposits from a large number of different stores. We analyze how prediction performance regarding a given store can be increased by using data from other stores. First we compare several machine learning methods, including Elastic Nets, Partial Least Squares, Generalized Additive Models, Random Forests, Gradient Boosting and Neural Networks using only data of a single time series. Afterwards we show that Random Forests are able to better utilize parallel time series data compared to Partial Least Squares. Using near-time data of parallel time series is highly beneficial for prediction performance. To allow a fair comparison between different machine learning methods, we present a novel hyper-parameter optimization technique using a regression tree. It enables a fast and flexible determination of optimal parameters for a given method.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3559645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Instead of relying solely on data of a single time series it is possible to use information of parallel, similar time series to improve prediction quality. Our data set consists of microeconomic data of daily store deposits from a large number of different stores. We analyze how prediction performance regarding a given store can be increased by using data from other stores. First we compare several machine learning methods, including Elastic Nets, Partial Least Squares, Generalized Additive Models, Random Forests, Gradient Boosting and Neural Networks using only data of a single time series. Afterwards we show that Random Forests are able to better utilize parallel time series data compared to Partial Least Squares. Using near-time data of parallel time series is highly beneficial for prediction performance. To allow a fair comparison between different machine learning methods, we present a novel hyper-parameter optimization technique using a regression tree. It enables a fast and flexible determination of optimal parameters for a given method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同机器学习方法对近时信息对微观经济平衡时间序列数据预测的影响
可以利用平行的、相似的时间序列信息来提高预测质量,而不是仅仅依赖于单个时间序列的数据。我们的数据集由来自大量不同商店的日常商店存款的微观经济数据组成。我们分析了如何通过使用来自其他存储的数据来提高给定存储的预测性能。首先,我们比较了几种机器学习方法,包括弹性网络、偏最小二乘、广义可加模型、随机森林、梯度增强和仅使用单个时间序列数据的神经网络。之后,我们证明了随机森林与偏最小二乘法相比能够更好地利用平行时间序列数据。利用平行时间序列的近时数据,对提高预测性能非常有利。为了在不同的机器学习方法之间进行公平的比较,我们提出了一种使用回归树的新型超参数优化技术。它可以快速灵活地确定给定方法的最佳参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Edgeworth Cycles Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs Improve the Prediction of Wind Speed using Hyperbolic Tangent Function with Artificial Neural Network Using Deep Q-Networks to Train an Agent to Navigate the Unity ML-Agents Banana Environment What Can Analysts Learn from Artificial Intelligence about Fundamental Analysis?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1