MineBench: A Benchmark Suite for Data Mining Workloads

R. Narayanan, Berkin Özisikyilmaz, Joseph Zambreno, G. Memik, A. Choudhary
{"title":"MineBench: A Benchmark Suite for Data Mining Workloads","authors":"R. Narayanan, Berkin Özisikyilmaz, Joseph Zambreno, G. Memik, A. Choudhary","doi":"10.1109/IISWC.2006.302743","DOIUrl":null,"url":null,"abstract":"Data mining constitutes an important class of scientific and commercial applications. Recent advances in data extraction techniques have created vast data sets, which require increasingly complex data mining algorithms to sift through them to generate meaningful information. The disproportionately slower rate of growth of computer systems has led to a sizeable performance gap between data mining systems and algorithms. The first step in closing this gap is to analyze these algorithms and understand their bottlenecks. With this knowledge, current computer architectures can be optimized for data mining applications. In this paper, we present MineBench, a publicly available benchmark suite containing fifteen representative data mining applications belonging to various categories such as clustering, classification, and association rule mining. We believe that MineBench will be of use to those looking to characterize and accelerate data mining workloads","PeriodicalId":222041,"journal":{"name":"2006 IEEE International Symposium on Workload Characterization","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"250","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2006.302743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 250

Abstract

Data mining constitutes an important class of scientific and commercial applications. Recent advances in data extraction techniques have created vast data sets, which require increasingly complex data mining algorithms to sift through them to generate meaningful information. The disproportionately slower rate of growth of computer systems has led to a sizeable performance gap between data mining systems and algorithms. The first step in closing this gap is to analyze these algorithms and understand their bottlenecks. With this knowledge, current computer architectures can be optimized for data mining applications. In this paper, we present MineBench, a publicly available benchmark suite containing fifteen representative data mining applications belonging to various categories such as clustering, classification, and association rule mining. We believe that MineBench will be of use to those looking to characterize and accelerate data mining workloads
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MineBench:数据挖掘工作负载的基准测试套件
数据挖掘构成了一类重要的科学和商业应用。数据提取技术的最新进展创造了庞大的数据集,这需要越来越复杂的数据挖掘算法来筛选它们以生成有意义的信息。计算机系统不成比例的缓慢增长速度导致数据挖掘系统和算法之间存在相当大的性能差距。缩小这一差距的第一步是分析这些算法并了解它们的瓶颈。有了这些知识,当前的计算机体系结构就可以针对数据挖掘应用进行优化。在本文中,我们介绍了MineBench,这是一个公开可用的基准套件,包含15个具有代表性的数据挖掘应用程序,属于不同的类别,如聚类、分类和关联规则挖掘。我们相信,对于那些希望描述和加速数据挖掘工作负载的人来说,MineBench将是有用的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Benchmark Subsetting Approaches An Architectural Characterization Study of Data Mining and Bioinformatics Workloads Techniques for Real-System Characterization of Java Virtual Machine Energy and Power Behavior A Quantitative Evaluation of the Contribution of Native Code to Java Workloads DFS: A Simple to Write Yet Difficult to Execute Benchmark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1