A non-Gaussian approach for biosignal classification based on the Johnson SU translation system

Hideaki Hayashi, Y. Kurita, T. Tsuji
{"title":"A non-Gaussian approach for biosignal classification based on the Johnson SU translation system","authors":"Hideaki Hayashi, Y. Kurita, T. Tsuji","doi":"10.1109/IWCIA.2015.7449473","DOIUrl":null,"url":null,"abstract":"This paper proposes a non-Gaussian approach for biosignal classification based on the Johnson SU translation system. The Johnson system is a normalizing translation that transforms data without normality to normal distribution using four parameters, thereby enabling the representation of a wide range of shapes for marginal distribution with skewness and kurtosis. In this study, a discriminative model based on the multivariate Johnson SU translation system is transformed into linear combinations of coefficients and input vectors using log-linearization, and is incorporated into a neural network structure, thereby allowing the determination of model parameters as weight coefficients of the network via backpropagation-based training. In the experiments, the classification performance of the proposed network is demonstrated using artificial data and electromyogram data.","PeriodicalId":298756,"journal":{"name":"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"9 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2015.7449473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a non-Gaussian approach for biosignal classification based on the Johnson SU translation system. The Johnson system is a normalizing translation that transforms data without normality to normal distribution using four parameters, thereby enabling the representation of a wide range of shapes for marginal distribution with skewness and kurtosis. In this study, a discriminative model based on the multivariate Johnson SU translation system is transformed into linear combinations of coefficients and input vectors using log-linearization, and is incorporated into a neural network structure, thereby allowing the determination of model parameters as weight coefficients of the network via backpropagation-based training. In the experiments, the classification performance of the proposed network is demonstrated using artificial data and electromyogram data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Johnson SU翻译系统的非高斯生物信号分类方法
提出了一种基于Johnson SU翻译系统的生物信号非高斯分类方法。Johnson系统是一种标准化的转换,它使用四个参数将无正态性的数据转换为正态分布,从而能够表示具有偏度和峰度的边缘分布的各种形状。在本研究中,基于多元Johnson SU翻译系统的判别模型使用对数线性化将其转化为系数和输入向量的线性组合,并将其纳入神经网络结构,从而通过基于反向传播的训练确定模型参数作为网络的权系数。在实验中,使用人工数据和肌电图数据验证了该网络的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discussion about training effects of haptic guide function for endoscopic forceps operation A study for retailer's risk hedge considering responses of consumers in electricity deregulation Medical image understanding and Computational Anatomy Pseudo-potentiality maximization for improved interpretation and generalization in neural networks SIFT based approach on Bangla sign language recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1