{"title":"Life Cycle Assessment for Balance-of-System of Photovoltaic Energy Systems","authors":"Ziyi Wang, Zengqiao Chen, R. Wennersten, Qie Sun","doi":"10.1109/ICoPESA54515.2022.9754477","DOIUrl":null,"url":null,"abstract":"As production technologies of photovoltaic (PV) panels continue to improve, the balance-of-system (BOS) of a PV energy system account for an increasingly large share in the system’s overall environmental impacts, while little attention has been paid to BOSs from a life cycle assessment (LCA) perspective. Based on a thorough literature review, a rigorous definition and a clear system boundary of BOS were proposed in this study. A comprehensive LCA of PV BOSs was thus implemented in terms of different installation typologies. Results show that, for a 1 kW PV system, the BOS’s global warming potential (GWP) is 1.54E+05 kgCO2eq, its greenhouse gas (GHG) emissions are 1.67E+05 kgCO2eq, and its cumulative energy demand (CED) is 2.04E+06 MJ. In the BOS, car-based mobile washing contributes to the major impacts, while system mounting and module interconnection have major environmental impacts. In the installation typologies, in-roof slanted turns have relative advantages over the others in terms of environmental impacts.","PeriodicalId":142509,"journal":{"name":"2022 International Conference on Power Energy Systems and Applications (ICoPESA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Power Energy Systems and Applications (ICoPESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoPESA54515.2022.9754477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As production technologies of photovoltaic (PV) panels continue to improve, the balance-of-system (BOS) of a PV energy system account for an increasingly large share in the system’s overall environmental impacts, while little attention has been paid to BOSs from a life cycle assessment (LCA) perspective. Based on a thorough literature review, a rigorous definition and a clear system boundary of BOS were proposed in this study. A comprehensive LCA of PV BOSs was thus implemented in terms of different installation typologies. Results show that, for a 1 kW PV system, the BOS’s global warming potential (GWP) is 1.54E+05 kgCO2eq, its greenhouse gas (GHG) emissions are 1.67E+05 kgCO2eq, and its cumulative energy demand (CED) is 2.04E+06 MJ. In the BOS, car-based mobile washing contributes to the major impacts, while system mounting and module interconnection have major environmental impacts. In the installation typologies, in-roof slanted turns have relative advantages over the others in terms of environmental impacts.