Near-Lossless Coding of Plenoptic Camera Sensor Images for Archiving Light Field Array of Views

E. Palma, I. Tabus
{"title":"Near-Lossless Coding of Plenoptic Camera Sensor Images for Archiving Light Field Array of Views","authors":"E. Palma, I. Tabus","doi":"10.1109/IPTA54936.2022.9784151","DOIUrl":null,"url":null,"abstract":"In this paper we propose a near-lossless encoder for sensor images acquired by plenoptic cameras, and we investigate its usage for encoding in an archive all information needed for reconstructing high quality versions of the light field (LF) array of views(AoV). The near-lossless encoding of the plenoptic camera sensor image is realized by a modified version of the recently published sparse relevant regressors and contexts (SRRC) encoder. The lossy reconstruction is obtained in two nested loops: the outer one operates over the sensor image patches (each patch corresponding to a microlens image), and the inner loop operates over the pixels in the patch. In the latter, we enforce the SRRC predictors to use the already reconstructed lossy version of the sensor image. Then, we examine the usage of the near-lossless SRRC (NL-SRRC) codec as a building block for an archiving scheme including all information needed for running the plenoptic processing pipeline and obtaining the LF-AoV. Finally, we replace in the archiving scheme the NL-SRRC codec with other state of the art lossy codecs and compare the results, which show that NL-SRRC based archiving scheme achieves better performance for the range of high bitrates.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a near-lossless encoder for sensor images acquired by plenoptic cameras, and we investigate its usage for encoding in an archive all information needed for reconstructing high quality versions of the light field (LF) array of views(AoV). The near-lossless encoding of the plenoptic camera sensor image is realized by a modified version of the recently published sparse relevant regressors and contexts (SRRC) encoder. The lossy reconstruction is obtained in two nested loops: the outer one operates over the sensor image patches (each patch corresponding to a microlens image), and the inner loop operates over the pixels in the patch. In the latter, we enforce the SRRC predictors to use the already reconstructed lossy version of the sensor image. Then, we examine the usage of the near-lossless SRRC (NL-SRRC) codec as a building block for an archiving scheme including all information needed for running the plenoptic processing pipeline and obtaining the LF-AoV. Finally, we replace in the archiving scheme the NL-SRRC codec with other state of the art lossy codecs and compare the results, which show that NL-SRRC based archiving scheme achieves better performance for the range of high bitrates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全光相机传感器图像存档的近无损编码
在本文中,我们提出了一种近乎无损的编码器,用于全光学相机获取的传感器图像,并研究了它在档案中编码重建高质量版本光场(LF)视图阵列(AoV)所需的所有信息的用途。全光相机传感器图像的近无损编码是通过对最近发表的稀疏相关回归和上下文(SRRC)编码器的改进实现的。有损重构是在两个嵌套的循环中获得的:外层循环对传感器图像补丁(每个补丁对应一个微透镜图像)进行操作,内层循环对补丁中的像素进行操作。在后者中,我们强制SRRC预测器使用已经重建的传感器图像的有损版本。然后,我们研究了近无损SRRC (NL-SRRC)编解码器作为归档方案的构建块的使用,包括运行全光处理管道和获得LF-AoV所需的所有信息。最后,我们将NL-SRRC编解码器替换为其他最先进的有损编解码器,并对结果进行了比较,结果表明基于NL-SRRC的归档方案在高比特率范围内具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Session 3: Visual Computing in Digital Humanities Complex Texture Features Learned by Applying Randomized Neural Network on Graphs AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images Towards Fast and Accurate Intimate Contact Recognition through Video Analysis Draco-Based Selective Crypto-Compression Method of 3D objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1