4-Terminal MEMS relay with an extremely low contact resistance employing a novel one-contact design

Yong-Hoon Yoon, Yunsu Jin, Chang-Keun Kim, Songcheol Hong, Jun‐Bo Yoon
{"title":"4-Terminal MEMS relay with an extremely low contact resistance employing a novel one-contact design","authors":"Yong-Hoon Yoon, Yunsu Jin, Chang-Keun Kim, Songcheol Hong, Jun‐Bo Yoon","doi":"10.1109/TRANSDUCERS.2017.7994196","DOIUrl":null,"url":null,"abstract":"This paper reports a unique 4-terminal MEMS relay (actuation is electrically isolated with signal passage) employing a novel one-contact design to overcome high contact resistance problem of the conventional 4-terminal MEMS relay which utilizes a typical two-contact design. The fabricated 4-terminal MEMS relay with the one-contact design demonstrated a contact resistance of 18 mΩ, which is two order-of-magnitude lower value than that of the conventional two-contact design. To the best of our knowledge, this result is the lowest value in the 4-terminal MEMS relay and comparable value with the state-of-the-art in 3-terminal MEMS relay [14]. In addition, the relay was operated up to 1.1 × 106 cycles at 1 V / 50 mA in an air and hot switching condition with negligible contact resistance variation. The lifetime is 10 times longer than that of the conventional 4-terminal MEMS relay.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper reports a unique 4-terminal MEMS relay (actuation is electrically isolated with signal passage) employing a novel one-contact design to overcome high contact resistance problem of the conventional 4-terminal MEMS relay which utilizes a typical two-contact design. The fabricated 4-terminal MEMS relay with the one-contact design demonstrated a contact resistance of 18 mΩ, which is two order-of-magnitude lower value than that of the conventional two-contact design. To the best of our knowledge, this result is the lowest value in the 4-terminal MEMS relay and comparable value with the state-of-the-art in 3-terminal MEMS relay [14]. In addition, the relay was operated up to 1.1 × 106 cycles at 1 V / 50 mA in an air and hot switching condition with negligible contact resistance variation. The lifetime is 10 times longer than that of the conventional 4-terminal MEMS relay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用新颖的单触点设计,具有极低接触电阻的4端MEMS继电器
本文报道了一种独特的4端MEMS继电器(驱动与信号通道电隔离),采用新颖的单触点设计,克服了传统4端MEMS继电器采用典型的双触点设计的高接触电阻问题。采用单触点设计的4端MEMS继电器的触点电阻为18 mΩ,比传统的双触点设计低两个数量级。据我们所知,该结果是4端MEMS继电器中的最低值,与最先进的3端MEMS继电器相当[14]。此外,该继电器在1 V / 50 mA的空气和热开关条件下可运行1.1 × 106个周期,接触电阻变化可忽略不计。寿命是传统4端MEMS继电器的10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full integration of a dielectric elastomer actuator with a flexible 1 kV thin-film transistor Fully casted stretchable triboelectric device for energy harvesting and sensing made of elastomeric materials Local magnetization and sensing of flexible magnetic tag for long-term monitoring under wet environment Broadband frequency viscositymeasurement using low TCF shear mode resonators consisting of C-axis tilted scaln thin film on thick at-cut quartz plate Analysis of environmental bacteria at single-cell level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1