Inversion of Self-Potential Anomaly Using Laplace Crossover Operator Based Genetic Algorithm

T. Rajkumar
{"title":"Inversion of Self-Potential Anomaly Using Laplace Crossover Operator Based Genetic Algorithm","authors":"T. Rajkumar","doi":"10.3997/2214-4609.201801739","DOIUrl":null,"url":null,"abstract":"Summary This paper addresses the approach to invert parameters of different buried structures using their self-potential (SP) anomalies. This approach involves a Laplace Crossover (LX) operator based Genetic Algorithm (GA) to invert synthetic SP anomaly of buried sphere, cylinder and inclined sheet. GA is used to determine depth, shape factor, polarization angle, origin of anomaly, electric current dipole for sphere and cylinder and half width along with the mentioned parameters for inclined sheet. This study of the synthetic examples shows that the proposed GA works very well with both noise free and noise corrupted data. Since it gives good convergence of the inverted data to the original values of synthetic examples, it can also be used in interpretation of real field complex SP data.","PeriodicalId":325587,"journal":{"name":"80th EAGE Conference and Exhibition 2018","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th EAGE Conference and Exhibition 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201801739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary This paper addresses the approach to invert parameters of different buried structures using their self-potential (SP) anomalies. This approach involves a Laplace Crossover (LX) operator based Genetic Algorithm (GA) to invert synthetic SP anomaly of buried sphere, cylinder and inclined sheet. GA is used to determine depth, shape factor, polarization angle, origin of anomaly, electric current dipole for sphere and cylinder and half width along with the mentioned parameters for inclined sheet. This study of the synthetic examples shows that the proposed GA works very well with both noise free and noise corrupted data. Since it gives good convergence of the inverted data to the original values of synthetic examples, it can also be used in interpretation of real field complex SP data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拉普拉斯交叉算子的遗传算法反演自电位异常
本文研究了利用自电位异常反演不同埋地结构参数的方法。该方法采用基于拉普拉斯交叉算子(LX)的遗传算法(GA)反演埋地球体、圆柱体和倾斜板的综合SP异常。利用遗传算法确定深度、形状因子、极化角、异常来源、球体和圆柱体的电流偶极子、半宽度以及倾斜板的上述参数。综合算例的研究表明,所提出的遗传算法在无噪声和有噪声的数据上都能很好地工作。由于该方法使反演数据对合成样例的原始值具有较好的收敛性,因此也可用于实场复SP数据的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multivariate Constraints Time-Depth Conversion Method Based On Velocity Tomography and Application in Bohai K Oilfield Petroleum Exploration Prospect of the Area Longkou 7-6, Bohai Bay Basin, Offshore China Structure Preserving Regularization for Multitrace Sparse Deconvolution Private Equity Funding the Future of the North Sea? – Siccar Point Energy Case Study Dynamics and Evolution of Growth Faults - Implications on Stratigraphic Geometries and Facies Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1