Optimizing Neural Network Training through TensorFlow Profile Analysis in a Shared Memory System

F. Vilasbôas, Calebe P. Bianchini, Rodrigo Pasti, L. Castro
{"title":"Optimizing Neural Network Training through TensorFlow Profile Analysis in a Shared Memory System","authors":"F. Vilasbôas, Calebe P. Bianchini, Rodrigo Pasti, L. Castro","doi":"10.5753/wscad_estendido.2019.8701","DOIUrl":null,"url":null,"abstract":"On the one hand, Deep Neural Networks have emerged as a powerful tool for solving complex problems in image and text analysis. On the other, they are sophisticated learning machines that require deep programming and math skills to be understood and implemented. Therefore, most researchers employ toolboxes and frameworks to design and implement such architectures. This paper performs an execution analysis of TensorFlow, one of the most used deep network frameworks available, on a shared memory system. To do so, we chose a text classification problem based on tweets sentiment analysis. The focus of this work is to identify the best environment configuration for training neural networks on a shared memory system. We set five different configurations using environment variables to modify the TensorFlow execution behavior. The results on an Intel Xeon Platinum 8000 processors series show that the default environment configuration of the TensorFlow can increase the speed up to 5.8. But, fine-tuning this environment can improve the speedup at least 37%.","PeriodicalId":280012,"journal":{"name":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad_estendido.2019.8701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

On the one hand, Deep Neural Networks have emerged as a powerful tool for solving complex problems in image and text analysis. On the other, they are sophisticated learning machines that require deep programming and math skills to be understood and implemented. Therefore, most researchers employ toolboxes and frameworks to design and implement such architectures. This paper performs an execution analysis of TensorFlow, one of the most used deep network frameworks available, on a shared memory system. To do so, we chose a text classification problem based on tweets sentiment analysis. The focus of this work is to identify the best environment configuration for training neural networks on a shared memory system. We set five different configurations using environment variables to modify the TensorFlow execution behavior. The results on an Intel Xeon Platinum 8000 processors series show that the default environment configuration of the TensorFlow can increase the speed up to 5.8. But, fine-tuning this environment can improve the speedup at least 37%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于TensorFlow剖面分析的共享内存系统神经网络训练优化
一方面,深度神经网络已经成为解决图像和文本分析中复杂问题的强大工具。另一方面,它们是复杂的学习机器,需要深厚的编程和数学技能才能理解和实现。因此,大多数研究人员使用工具箱和框架来设计和实现这样的体系结构。本文对目前最常用的深度网络框架TensorFlow在共享内存系统上的执行情况进行了分析。为此,我们选择了一个基于tweets情感分析的文本分类问题。这项工作的重点是确定在共享内存系统上训练神经网络的最佳环境配置。我们使用环境变量设置了五种不同的配置来修改TensorFlow的执行行为。在英特尔至强白金8000处理器系列上的结果表明,默认环境配置可以将TensorFlow的速度提高到5.8。但是,对这个环境进行微调可以将加速提高至少37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paralelização do Algoritmo de Indexação de Dados Multimídia Baseado em Quantização Structural testing criteria for concurrent programs considering loop executions Uma Abordagem em Ambiente Domiciliar Assistido Baseada no Paradigma de Segurança Orientada a Contexto Arquitetura Adaptável para Execução de Redes Neurais Artificiais em Dispositivos FPGA An Interference-aware Virtual Machine Placement Strategy for Small-scale HPC Applications in Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1