Drug-taking instruments recognition

Ruiguang Hu, Nianhua Xie, Weiming Hu
{"title":"Drug-taking instruments recognition","authors":"Ruiguang Hu, Nianhua Xie, Weiming Hu","doi":"10.1109/ACPR.2011.6166575","DOIUrl":null,"url":null,"abstract":"In this paper we propose an algorithm for the recognition of three kinds of drug-taking instruments, including bongs, hookahs and spoons. A global feature - Pyramid of Histograms of Orientation Gradients (PHOG) - is used to represent images. PHOG is calculated by partitioning an image into increasingly fine sub-regions and concatenating the appropriately weighted histograms of orientation gradients of each sub-region at each level. Then, different classifiers can be employed to handle this recognition problem. In our experiments, Support Vector Machines (SVM) with five different kernels and Random Forest are evaluated for our application and SVM with χ2 kernel shows the best performance. We also compare our method with the standard Bag-of-Words (BOW) model using SIFT features. Experimental results demonstrate that in our application, directly using appropriate global feature (PHOG) is better than using local feature (SIFT) and BOW model in both performance and complexity.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we propose an algorithm for the recognition of three kinds of drug-taking instruments, including bongs, hookahs and spoons. A global feature - Pyramid of Histograms of Orientation Gradients (PHOG) - is used to represent images. PHOG is calculated by partitioning an image into increasingly fine sub-regions and concatenating the appropriately weighted histograms of orientation gradients of each sub-region at each level. Then, different classifiers can be employed to handle this recognition problem. In our experiments, Support Vector Machines (SVM) with five different kernels and Random Forest are evaluated for our application and SVM with χ2 kernel shows the best performance. We also compare our method with the standard Bag-of-Words (BOW) model using SIFT features. Experimental results demonstrate that in our application, directly using appropriate global feature (PHOG) is better than using local feature (SIFT) and BOW model in both performance and complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸毒工具识别
本文提出了一种识别三种吸毒工具的算法,包括烟斗、水烟和勺子。一个全局特征-方向梯度直方图金字塔(PHOG) -被用来表示图像。PHOG的计算方法是将图像划分为越来越精细的子区域,并将每个子区域在每个级别上的方向梯度的适当加权直方图连接起来。然后,可以使用不同的分类器来处理这个识别问题。在我们的实验中,我们评估了五种不同核的支持向量机(SVM)和随机森林的应用,其中带有χ2核的支持向量机(SVM)表现出最好的性能。我们还将我们的方法与使用SIFT特征的标准词袋(BOW)模型进行了比较。实验结果表明,在我们的应用中,直接使用适当的全局特征(PHOG)在性能和复杂度上都优于使用局部特征(SIFT)和BOW模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1