RealPigment: paint compositing by example

Jingwan Lu, S. DiVerdi, Willa Chen, Connelly Barnes, Adam Finkelstein
{"title":"RealPigment: paint compositing by example","authors":"Jingwan Lu, S. DiVerdi, Willa Chen, Connelly Barnes, Adam Finkelstein","doi":"10.1145/2630397.2630401","DOIUrl":null,"url":null,"abstract":"The color of composited pigments in digital painting is generally computed one of two ways: either alpha blending in RGB, or the Kubelka-Munk equation (KM). The former fails to reproduce paint like appearances, while the latter is difficult to use. We present a data-driven pigment model that reproduces arbitrary compositing behavior by interpolating sparse samples in a high dimensional space. The input is an of a color chart, which provides the composition samples. We propose two different prediction algorithms, one doing simple interpolation using radial basis functions (RBF), and another that trains a parametric model based on the KM equation to compute novel values. We show that RBF is able to reproduce arbitrary compositing behaviors, even non-paint-like such as additive blending, while KM compositing is more robust to acquisition noise and can generalize results over a broader range of values.","PeriodicalId":204343,"journal":{"name":"International Symposium on Non-Photorealistic Animation and Rendering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2630397.2630401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The color of composited pigments in digital painting is generally computed one of two ways: either alpha blending in RGB, or the Kubelka-Munk equation (KM). The former fails to reproduce paint like appearances, while the latter is difficult to use. We present a data-driven pigment model that reproduces arbitrary compositing behavior by interpolating sparse samples in a high dimensional space. The input is an of a color chart, which provides the composition samples. We propose two different prediction algorithms, one doing simple interpolation using radial basis functions (RBF), and another that trains a parametric model based on the KM equation to compute novel values. We show that RBF is able to reproduce arbitrary compositing behaviors, even non-paint-like such as additive blending, while KM compositing is more robust to acquisition noise and can generalize results over a broader range of values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
real色素:油漆合成的例子
数字绘画中合成颜料的颜色通常有两种计算方法:要么是RGB中的alpha混合,要么是Kubelka-Munk方程(KM)。前者无法再现油漆般的外观,而后者则难以使用。我们提出了一个数据驱动的颜料模型,该模型通过在高维空间中插值稀疏样本来再现任意合成行为。输入是一个彩色图表,它提供了组合样本。我们提出了两种不同的预测算法,一种是使用径向基函数(RBF)进行简单的插值,另一种是基于KM方程训练参数模型来计算新值。我们表明,RBF能够再现任意合成行为,甚至是非油漆的合成行为,如添加混合,而KM合成对采集噪声更具鲁棒性,并且可以在更广泛的值范围内推广结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying visual abstraction quality for stipple drawings Real-time panorama maps Depth-aware neural style transfer Pigment-based recoloring of watercolor paintings A generic framework for the structured abstraction of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1