Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures

L. Bruce, A. Mathur
{"title":"Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures","authors":"L. Bruce, A. Mathur","doi":"10.2747/1548-1603.43.1.67","DOIUrl":null,"url":null,"abstract":"Temporal vegetation signatures (i.e., vegetation indices as functions of time) generated using the MODIS imagery poses many challenges, primarily due to signal-to-noise-related issues. This article describes the use of MODIS time-series data for the detection of specific tropical invasive species vegetation types. Due to challenges with the MODIS quality assurance data, a significant level of noise was present in the temporal signatures. This study investigated methods for denoising the vegetation temporal signatures, followed by a comparative analysis of three denoising methods to generate signatures for vegetation target detection. The analytical approach focused on the use of wavelet-based versus Fourier-based feature extraction methods. Methods included the development of a novel wavelet-based feature extraction method that quantifies the fundamental shape of the temporal signatures.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2747/1548-1603.43.1.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Temporal vegetation signatures (i.e., vegetation indices as functions of time) generated using the MODIS imagery poses many challenges, primarily due to signal-to-noise-related issues. This article describes the use of MODIS time-series data for the detection of specific tropical invasive species vegetation types. Due to challenges with the MODIS quality assurance data, a significant level of noise was present in the temporal signatures. This study investigated methods for denoising the vegetation temporal signatures, followed by a comparative analysis of three denoising methods to generate signatures for vegetation target detection. The analytical approach focused on the use of wavelet-based versus Fourier-based feature extraction methods. Methods included the development of a novel wavelet-based feature extraction method that quantifies the fundamental shape of the temporal signatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MODIS多时相植被特征去噪与小波特征提取
使用MODIS图像生成的时间植被特征(即作为时间函数的植被指数)存在许多挑战,主要是由于与信号-噪声相关的问题。本文介绍了利用MODIS时间序列数据检测特定热带入侵物种植被类型的方法。由于MODIS质量保证数据的挑战,在时间特征中存在显著水平的噪声。本文研究了植被时间特征的去噪方法,并对三种去噪方法进行了对比分析,生成用于植被目标检测的特征。分析方法侧重于使用基于小波和基于傅里叶的特征提取方法。方法包括开发一种新的基于小波的特征提取方法,该方法量化了时间特征的基本形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mined sand dune revegetation sequence in Myall Lakes, N.S.W., Australia Temporal signatures and harmonic analysis of natural and anthropogenic disturbances of forested landscapes: a case study in the Yellowstone region Development of indicators of burning efficiency based on time series of SPOT VEGETATION data Multitemporal analysis of NDVI and land surface temperature for modeling the probability of forest fire occurrence in central Mexico Post-classification digital change detection analysis of a temperate forest in the southwest basin of Mexico City, in a 16-year span
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1