Simple Reinforcement Learning for Small-Memory Agent

A. Notsu, Katsuhiro Honda, H. Ichihashi, Yuki Komori
{"title":"Simple Reinforcement Learning for Small-Memory Agent","authors":"A. Notsu, Katsuhiro Honda, H. Ichihashi, Yuki Komori","doi":"10.1109/ICMLA.2011.127","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Simple Reinforcement Learning for a reinforcement learning agent that has small memory. In the real world, learning is difficult because there are an infinite number of states and actions that need a large number of stored memories and learning times. To solve a problem, estimated values are categorized as ``GOOD\" or ``NO GOOD\" in the reinforcement learning process. Additionally, the alignment sequence of estimated values is changed because they are regarded as an important sequence themselves. We conducted some simulations and observed the influence of our methods. Several simulation results show no bad influence on learning speed.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose Simple Reinforcement Learning for a reinforcement learning agent that has small memory. In the real world, learning is difficult because there are an infinite number of states and actions that need a large number of stored memories and learning times. To solve a problem, estimated values are categorized as ``GOOD" or ``NO GOOD" in the reinforcement learning process. Additionally, the alignment sequence of estimated values is changed because they are regarded as an important sequence themselves. We conducted some simulations and observed the influence of our methods. Several simulation results show no bad influence on learning speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小记忆体的简单强化学习
在本文中,我们提出了一种简单的强化学习方法,用于具有小内存的强化学习代理。在现实世界中,学习是困难的,因为有无数的状态和动作需要大量的存储记忆和学习时间。为了解决问题,在强化学习过程中,估计值被分类为“GOOD”或“NO GOOD”。此外,由于估计值本身被视为一个重要序列,因此改变了估计值的对齐顺序。我们进行了一些模拟,并观察了我们的方法的影响。多个仿真结果表明,对学习速度没有不良影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1