Discovering User Interest on Twitter with a Modified Author-Topic Model

Zhiheng Xu, Rong Lu, Liang Xiang, Qing Yang
{"title":"Discovering User Interest on Twitter with a Modified Author-Topic Model","authors":"Zhiheng Xu, Rong Lu, Liang Xiang, Qing Yang","doi":"10.1109/WI-IAT.2011.47","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of discovering users' topics of interest on Twitter. While previous efforts in modeling users' topics of interest on Twitter have focused on building a \"bag-of-words\" profile for each user based on his tweets, they overlooked the fact that Twitter users usually publish noisy posts about their lives or create conversation with their friends, which do not relate to their topics of interest. In this paper, we propose a novel framework to address this problem by introducing a modified author-topic model named twitter-user model. For each single tweet, our model uses a latent variable to indicate whether it is related to its author's interest. Experiments on a large dataset we crawled using Twitter API demonstrate that our model outperforms traditional methods in discovering user interest on Twitter.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

This paper focuses on the problem of discovering users' topics of interest on Twitter. While previous efforts in modeling users' topics of interest on Twitter have focused on building a "bag-of-words" profile for each user based on his tweets, they overlooked the fact that Twitter users usually publish noisy posts about their lives or create conversation with their friends, which do not relate to their topics of interest. In this paper, we propose a novel framework to address this problem by introducing a modified author-topic model named twitter-user model. For each single tweet, our model uses a latent variable to indicate whether it is related to its author's interest. Experiments on a large dataset we crawled using Twitter API demonstrate that our model outperforms traditional methods in discovering user interest on Twitter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用修改的作者-主题模型发现Twitter上的用户兴趣
本文主要研究如何在Twitter上发现用户感兴趣的话题。虽然之前在Twitter上对用户感兴趣的话题进行建模的努力主要集中在根据每个用户的推文为他建立一个“词袋”档案,但他们忽略了一个事实,即Twitter用户通常会发布关于他们生活的嘈杂帖子,或者与朋友建立对话,这些帖子与他们感兴趣的话题无关。在本文中,我们提出了一个新的框架,通过引入一个改进的作者-主题模型,即twitter-用户模型来解决这个问题。对于每一条推文,我们的模型使用一个潜在变量来指示它是否与作者的兴趣相关。在使用Twitter API抓取的大型数据集上进行的实验表明,我们的模型在发现Twitter用户兴趣方面优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slovak Blog Clustering Enhanced by Mining the Web Comments Automatic Face Annotation in News Images by Mining the Web Exploiting Additional Dimensions as Virtual Items on Top-N Recommender Systems Supporting Agent Systems in the Programming Language A Software Agent Framework for Exploiting Demand-Side Consumer Social Networks in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1