Webcam geo-localization using aggregate light levels

Nathan Jacobs, Kylia Miskell, Robert Pless
{"title":"Webcam geo-localization using aggregate light levels","authors":"Nathan Jacobs, Kylia Miskell, Robert Pless","doi":"10.1109/WACV.2011.5711494","DOIUrl":null,"url":null,"abstract":"We consider the problem of geo-locating static cameras from long-term time-lapse imagery. This problem has received significant attention recently, with most methods making strong assumptions on the geometric structure of the scene. We explore a simple, robust cue that relates overall image intensity to the zenith angle of the sun (which need not be visible). We characterize the accuracy of geolocation based on this cue as a function of different models of the zenith-intensity relationship and the amount of imagery available. We evaluate our algorithm on a dataset of more than 60 million images captured from outdoor webcams located around the globe. We find that using our algorithm with images sampled every 30 minutes, yields localization errors of less than 100 km for the majority of cameras.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We consider the problem of geo-locating static cameras from long-term time-lapse imagery. This problem has received significant attention recently, with most methods making strong assumptions on the geometric structure of the scene. We explore a simple, robust cue that relates overall image intensity to the zenith angle of the sun (which need not be visible). We characterize the accuracy of geolocation based on this cue as a function of different models of the zenith-intensity relationship and the amount of imagery available. We evaluate our algorithm on a dataset of more than 60 million images captured from outdoor webcams located around the globe. We find that using our algorithm with images sampled every 30 minutes, yields localization errors of less than 100 km for the majority of cameras.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用聚合光照水平的网络摄像头地理定位
我们考虑了从长期延时图像中定位静态相机的问题。这个问题最近受到了极大的关注,大多数方法都对场景的几何结构做了很强的假设。我们探索了一个简单的,强大的线索,将整体图像强度与太阳的天顶角(不需要可见)联系起来。我们将基于此线索的地理定位精度描述为天顶强度关系的不同模型和可用图像量的函数。我们在全球户外网络摄像头拍摄的6000多万张图像的数据集上评估了我们的算法。我们发现,使用我们的算法每30分钟采样一次图像,对大多数相机产生的定位误差小于100公里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1