Multi-label Deep Convolutional Transform Learning for Non-intrusive Load Monitoring

Shikha Singh, É. Chouzenoux, G. Chierchia, A. Majumdar
{"title":"Multi-label Deep Convolutional Transform Learning for Non-intrusive Load Monitoring","authors":"Shikha Singh, É. Chouzenoux, G. Chierchia, A. Majumdar","doi":"10.1145/3502729","DOIUrl":null,"url":null,"abstract":"The objective of this letter is to propose a novel computational method to learn the state of an appliance (ON / OFF) given the aggregate power consumption recorded by the smart-meter. We formulate a multi-label classification problem where the classes correspond to the appliances. The proposed approach is based on our recently introduced framework of convolutional transform learning. We propose a deep supervised version of it relying on an original multi-label cost. Comparisons with state-of-the-art techniques show that our proposed method improves over the benchmarks on popular non-intrusive load monitoring datasets.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"83 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The objective of this letter is to propose a novel computational method to learn the state of an appliance (ON / OFF) given the aggregate power consumption recorded by the smart-meter. We formulate a multi-label classification problem where the classes correspond to the appliances. The proposed approach is based on our recently introduced framework of convolutional transform learning. We propose a deep supervised version of it relying on an original multi-label cost. Comparisons with state-of-the-art techniques show that our proposed method improves over the benchmarks on popular non-intrusive load monitoring datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非侵入式负荷监测的多标签深度卷积变换学习
这封信的目的是提出一种新的计算方法来学习电器的状态(开/关)给定智能电表记录的总功耗。我们制定了一个多标签分类问题,其中类对应于器具。所提出的方法是基于我们最近引入的卷积变换学习框架。我们提出了一个基于原始多标签成本的深度监督版本。与最新技术的比较表明,我们提出的方法比流行的非侵入式负载监控数据集的基准性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning-based Short-term Rainfall Prediction from Sky Data Incremental Feature Spaces Learning with Label Scarcity Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series Segment-Wise Time-Varying Dynamic Bayesian Network with Graph Regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1