Current Development of Ontology-Based Context Modeling

Leila Zemmouchi-Ghomari
{"title":"Current Development of Ontology-Based Context Modeling","authors":"Leila Zemmouchi-Ghomari","doi":"10.4018/ijdai.2018070103","DOIUrl":null,"url":null,"abstract":"Any information used to characterize the situation of an entity: a person, a place, or an object, can be considered as context. Indeed, context is crucial to avoid semantic ambiguity in data interpretation. However, linking data to its context is a recognized research issue. Adopting an ontology-based approach to model formally the context enables automatic interpretation and reasoning capabilities. This article discusses the main context modeling approaches based ontology by highlighting their principles, scenarios, use cases, benefits, and challenges to explore the use of ontologies to represent contexts.","PeriodicalId":176325,"journal":{"name":"International Journal of Distributed Artificial Intelligence","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdai.2018070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Any information used to characterize the situation of an entity: a person, a place, or an object, can be considered as context. Indeed, context is crucial to avoid semantic ambiguity in data interpretation. However, linking data to its context is a recognized research issue. Adopting an ontology-based approach to model formally the context enables automatic interpretation and reasoning capabilities. This article discusses the main context modeling approaches based ontology by highlighting their principles, scenarios, use cases, benefits, and challenges to explore the use of ontologies to represent contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于本体的上下文建模的发展现状
任何用来描述一个实体的情况的信息:一个人、一个地方或一个物体,都可以被认为是上下文。事实上,上下文对于避免数据解释中的语义歧义至关重要。然而,将数据与其上下文联系起来是一个公认的研究问题。采用基于本体的方法对上下文进行形式化建模,可以实现自动解释和推理功能。本文讨论了基于本体的主要上下文建模方法,重点介绍了它们的原理、场景、用例、好处和挑战,以探索使用本体来表示上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object Detection Using Region-Conventional Neural Network (RCNN) and OpenCV Machine Learning Techniques-Based Banking Loan Eligibility Prediction Efficient Detection of Humans in Flames Using HOG as a Feature Criterion in Machine Learning Smart System Using IoT to Protect the Kitchen From Fire Distributed Business Process Discovery in Cloud Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1