Traffic state variables estimating and predicting with extended Kalman filtering

J. Abdi, B. Moshiri, E. Jafari, A. K. Sedigh
{"title":"Traffic state variables estimating and predicting with extended Kalman filtering","authors":"J. Abdi, B. Moshiri, E. Jafari, A. K. Sedigh","doi":"10.1109/ICPCES.2010.5698624","DOIUrl":null,"url":null,"abstract":"To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of traffic systems. METANET model is one of the most applicable models in traffic modeling which parameters have plenty of effects on model behavior. In this paper, we describe the effects of the model parameters on the model behavior and the estimation quality of system states in the case of undetermined parameters. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic traffic networks for preparing proper signal in traffic control.","PeriodicalId":439893,"journal":{"name":"2010 International Conference on Power, Control and Embedded Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Power, Control and Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCES.2010.5698624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of traffic systems. METANET model is one of the most applicable models in traffic modeling which parameters have plenty of effects on model behavior. In this paper, we describe the effects of the model parameters on the model behavior and the estimation quality of system states in the case of undetermined parameters. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic traffic networks for preparing proper signal in traffic control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展卡尔曼滤波的交通状态变量估计与预测
建立数学模型并估计其参数是研究交通系统动态行为的关键问题。METANET模型是交通建模中应用最广泛的模型之一,其参数对模型行为有很大的影响。本文讨论了在参数未定的情况下,模型参数对模型行为和系统状态估计质量的影响。初步结果表明,EKF能够准确估计动态交通网络非线性状态空间方程中的参数和状态,为交通控制中准备合适的信号提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage sags and their characterization Ultra low voltage high speed 1-bit CMOS adder Performance enhancement of QoS routing protocol for ad-hoc networks using smart antenna Performance study of beacon-enabled IEEE 802.15.4 standard in WSNs with clustering Single-phase AC/DC/AC converter using cascaded multilevel inverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1