Empirical and Sensor Knowledge-extraction for Fuzzy Logic Motor Control Design

J.L. Gonzalez-V, Oscar Castillo, L. Aguilar
{"title":"Empirical and Sensor Knowledge-extraction for Fuzzy Logic Motor Control Design","authors":"J.L. Gonzalez-V, Oscar Castillo, L. Aguilar","doi":"10.1109/NAFIPS.2007.383911","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for human and sensor data knowledge-extraction to assist in the design of a Fuzzy Logic Controller (FLC) when no parameterized model of the motor is available, thus it relays mainly on linguistic motor throughput description as its main data source. Proposed design methodology achieves acceptable control objective with two design stages; first, human empirical knowledge is used to specify FLC architecture and its initial parameters, employing experts' linguistic descriptions to construct controller rule base and knowledge base in accordance with cognitive map theory; Mamdani Fuzzy Inference Engine model (FIE) enables the designer to directly use empirical knowledge to create appropriate FLC by using linguistic terms to specify FLC structures. On second design stage, sensor data is use to fine-tune FLC parameters, as FLC parameters to motor control throughput relations is known by observation. The main objective of this paper is to develop a strategy of a FLC implementation capable of self-tuning, based on cognitive map theory and linguistic descriptions.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a methodology for human and sensor data knowledge-extraction to assist in the design of a Fuzzy Logic Controller (FLC) when no parameterized model of the motor is available, thus it relays mainly on linguistic motor throughput description as its main data source. Proposed design methodology achieves acceptable control objective with two design stages; first, human empirical knowledge is used to specify FLC architecture and its initial parameters, employing experts' linguistic descriptions to construct controller rule base and knowledge base in accordance with cognitive map theory; Mamdani Fuzzy Inference Engine model (FIE) enables the designer to directly use empirical knowledge to create appropriate FLC by using linguistic terms to specify FLC structures. On second design stage, sensor data is use to fine-tune FLC parameters, as FLC parameters to motor control throughput relations is known by observation. The main objective of this paper is to develop a strategy of a FLC implementation capable of self-tuning, based on cognitive map theory and linguistic descriptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊逻辑电机控制设计的经验和传感器知识提取
本文提出了一种人类和传感器数据知识提取方法,用于在没有电机参数化模型的情况下辅助模糊逻辑控制器(FLC)的设计,因此它主要依靠语言电机吞吐量描述作为其主要数据源。提出的设计方法通过两个设计阶段实现可接受的控制目标;首先,利用人类经验知识确定FLC结构及其初始参数,根据认知地图理论,利用专家语言描述构建控制器规则库和知识库;Mamdani模糊推理引擎模型(FIE)使设计人员能够直接使用经验知识,通过使用语言术语来指定FLC结构来创建合适的FLC。在第二个设计阶段,利用传感器数据对FLC参数进行微调,因为FLC参数与电机控制吞吐量的关系是通过观察得到的。本文的主要目的是开发一种基于认知地图理论和语言描述的自调谐FLC实现策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neighbourhood Sets based on Web Usage Mining Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle Fuzzy ROI Based 2-D/3-D Registration for Kinetic Analysis after Anterior Cruciate Ligament Reconstruction About the Division Operator in a Possibilistic Database Framework A Fast Structural Optimization Technique for IDS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1