Inducing Sound Segment Differences Using Pair Hidden Markov Models

Martijn Wieling, Therese Leinonen, J. Nerbonne
{"title":"Inducing Sound Segment Differences Using Pair Hidden Markov Models","authors":"Martijn Wieling, Therese Leinonen, J. Nerbonne","doi":"10.3115/1626516.1626523","DOIUrl":null,"url":null,"abstract":"Pair Hidden Markov Models (PairHMMs) are trained to align the pronunciation transcriptions of a large contemporary collection of Dutch dialect material, the Goeman-Taeldeman-Van Reenen-Project (GTRP, collected 1980--1995). We focus on the question of how to incorporate information about sound segment distances to improve sequence distance measures for use in dialect comparison. PairHMMs induce segment distances via expectation maximisation (EM). Our analysis uses a phonologically comparable subset of 562 items for all 424 localities in the Netherlands. We evaluate the work first via comparison to analyses obtained using the Levenshtein distance on the same dataset and second, by comparing the quality of the induced vowel distances to acoustic differences.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1626516.1626523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Pair Hidden Markov Models (PairHMMs) are trained to align the pronunciation transcriptions of a large contemporary collection of Dutch dialect material, the Goeman-Taeldeman-Van Reenen-Project (GTRP, collected 1980--1995). We focus on the question of how to incorporate information about sound segment distances to improve sequence distance measures for use in dialect comparison. PairHMMs induce segment distances via expectation maximisation (EM). Our analysis uses a phonologically comparable subset of 562 items for all 424 localities in the Netherlands. We evaluate the work first via comparison to analyses obtained using the Levenshtein distance on the same dataset and second, by comparing the quality of the induced vowel distances to acoustic differences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用对隐马尔可夫模型诱导声音片段差异
对隐马尔可夫模型(pairhmm)进行训练,以对齐大量当代荷兰方言材料的发音转录,goeman - taeldemand - van Reenen-Project (GTRP,收集1980- 1995)。我们关注的问题是如何结合音段距离的信息来改进方言比较中使用的序列距离测量。pairhmm通过期望最大化(EM)来诱导区段距离。我们的分析使用了荷兰所有424个地区的562个项目的语音可比子集。我们首先通过与同一数据集上使用Levenshtein距离获得的分析结果进行比较,然后通过比较诱导元音距离与声学差异的质量来评估工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Colexifications for Bootstrapping Cross-lingual Datasets: The Case of Phonology, Concreteness, and Affectiveness KU-CST at the SIGMORPHON 2020 Task 2 on Unsupervised Morphological Paradigm Completion Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars Exploring Neural Architectures And Techniques For Typologically Diverse Morphological Inflection SIGMORPHON 2020 Task 0 System Description: ETH Zürich Team
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1