Learning-Based Adaptive Management of QoS and Energy for Mobile Robotic Missions

Dinh-Khanh Ho, K. B. Chehida, Benoît Miramond, M. Auguin
{"title":"Learning-Based Adaptive Management of QoS and Energy for Mobile Robotic Missions","authors":"Dinh-Khanh Ho, K. B. Chehida, Benoît Miramond, M. Auguin","doi":"10.1142/s1793351x19400221","DOIUrl":null,"url":null,"abstract":"Mobile robotic systems are normally confronted with the shortage of on-board resources such as computing capabilities and energy, as well as significantly influenced by the dynamics of surrounding environmental conditions. This context requires adaptive decisions at run-time that react to the dynamic and uncertain operational circumstances for guaranteeing the performance requirements while respecting the other constraints. In this paper, we propose a reinforcement learning (RL)-based approach for Quality of Service QoS and energy-aware autonomous robotic mission manager. The mobile robotic mission manager leverages the idea of (RL) by monitoring actively the state of performance and energy consumption of the mission and then selecting the best mapping parameter configuration by evaluating an accumulative reward feedback balancing between QoS and energy. As a case study, we apply this methodology to an autonomous navigation mission. Our simulation results demonstrate the efficiency of the proposed management framework and provide a promising solution for the real mobile robotic systems.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793351x19400221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile robotic systems are normally confronted with the shortage of on-board resources such as computing capabilities and energy, as well as significantly influenced by the dynamics of surrounding environmental conditions. This context requires adaptive decisions at run-time that react to the dynamic and uncertain operational circumstances for guaranteeing the performance requirements while respecting the other constraints. In this paper, we propose a reinforcement learning (RL)-based approach for Quality of Service QoS and energy-aware autonomous robotic mission manager. The mobile robotic mission manager leverages the idea of (RL) by monitoring actively the state of performance and energy consumption of the mission and then selecting the best mapping parameter configuration by evaluating an accumulative reward feedback balancing between QoS and energy. As a case study, we apply this methodology to an autonomous navigation mission. Our simulation results demonstrate the efficiency of the proposed management framework and provide a promising solution for the real mobile robotic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的移动机器人任务QoS和能量自适应管理
移动机器人系统通常面临着计算能力和能源等机载资源的不足,以及受周围环境条件动态影响较大。此上下文需要在运行时对动态和不确定的操作环境做出自适应决策,以在尊重其他约束的同时保证性能需求。本文提出了一种基于强化学习(RL)的服务质量QoS和能量感知自主机器人任务管理器方法。移动机器人任务管理器利用(RL)的思想,主动监测任务的性能状态和能量消耗,然后通过评估QoS和能量之间的累积奖励反馈平衡来选择最佳映射参数配置。作为案例研究,我们将此方法应用于自主导航任务。仿真结果证明了所提出的管理框架的有效性,为实际的移动机器人系统提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1