{"title":"Latency-Optimized Networks for Clustering FPGAs","authors":"Trevor Bunker, S. Swanson","doi":"10.1109/FCCM.2013.49","DOIUrl":null,"url":null,"abstract":"The data-intensive applications that will shape computing in the coming decades require scalable architectures that incorporate scalable data and compute resources and can support random requests to unstructured (e.g., logs) and semi-structured (e.g., large graph, XML) data sets. To explore the suitability of FPGAs for these computations, we are constructing an FPGAbased system with a memory capacity of 512 GB from a collection of 32 Virtex-5 FPGAs spread across 8 enclosures. This paper describes our work in exploring alternative interconnect technologies and network topologies for FPGA-based clusters. The diverse interconnects combine inter-enclosure high-speed serial links and wide, single-ended intra-enclosure on-board traces with network topologies that balance network diameter, network throughput, and FPGA resource usage. We discuss the architecture of high-radix routers in FPGAs that optimize for the asymmetry between the interand intra-enclosure links. We analyze the various interconnects that aim to efficiently utilize the prototype's total switching capacity of 2.43 Tb/s. The networks we present have aggregate throughputs up to 51.4 GB/s for random traffic, diameters as low as 845 nanoseconds, and consume less than 12% of the FPGAs' logic resources.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The data-intensive applications that will shape computing in the coming decades require scalable architectures that incorporate scalable data and compute resources and can support random requests to unstructured (e.g., logs) and semi-structured (e.g., large graph, XML) data sets. To explore the suitability of FPGAs for these computations, we are constructing an FPGAbased system with a memory capacity of 512 GB from a collection of 32 Virtex-5 FPGAs spread across 8 enclosures. This paper describes our work in exploring alternative interconnect technologies and network topologies for FPGA-based clusters. The diverse interconnects combine inter-enclosure high-speed serial links and wide, single-ended intra-enclosure on-board traces with network topologies that balance network diameter, network throughput, and FPGA resource usage. We discuss the architecture of high-radix routers in FPGAs that optimize for the asymmetry between the interand intra-enclosure links. We analyze the various interconnects that aim to efficiently utilize the prototype's total switching capacity of 2.43 Tb/s. The networks we present have aggregate throughputs up to 51.4 GB/s for random traffic, diameters as low as 845 nanoseconds, and consume less than 12% of the FPGAs' logic resources.