{"title":"Empirical Study of Multi-label Classification Methods for Image Annotation and Retrieval","authors":"G. Nasierding, A. Kouzani","doi":"10.1109/DICTA.2010.113","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical study of multi-label classification methods, and gives suggestions for multi-label classification that are effective for automatic image annotation applications. The study shows that triple random ensemble multi-label classification algorithm (TREMLC) outperforms among its counterparts, especially on scene image dataset. Multi-label k-nearest neighbor (ML-kNN) and binary relevance (BR) learning algorithms perform well on Corel image dataset. Based on the overall evaluation results, examples are given to show label prediction performance for the algorithms using selected image examples. This provides an indication of the suitability of different multi-label classification methods for automatic image annotation under different problem settings.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This paper presents an empirical study of multi-label classification methods, and gives suggestions for multi-label classification that are effective for automatic image annotation applications. The study shows that triple random ensemble multi-label classification algorithm (TREMLC) outperforms among its counterparts, especially on scene image dataset. Multi-label k-nearest neighbor (ML-kNN) and binary relevance (BR) learning algorithms perform well on Corel image dataset. Based on the overall evaluation results, examples are given to show label prediction performance for the algorithms using selected image examples. This provides an indication of the suitability of different multi-label classification methods for automatic image annotation under different problem settings.