Complexity optimized vector quantization: a neural network approach

J. Buhmann, H. Kühnel
{"title":"Complexity optimized vector quantization: a neural network approach","authors":"J. Buhmann, H. Kühnel","doi":"10.1109/DCC.1992.227480","DOIUrl":null,"url":null,"abstract":"The authors discuss a vector quantization strategy which jointly optimizes distortion errors and complexity costs. A maximum entropy estimation of the vector quantization cost function yields an optimal codebook size, the reference vectors and the assignment frequencies. They compare different complexity measures for the design of image compression algorithms which quantize wavelet decomposed images. An online version of complexity optimized vector quantization is implemented by an artificial neural network with winner-take-all connectivity. Their approach establishes a unifying framework for different quantization methods like K-means clustering and its fuzzy version, entropy constrained vector quantization or self-organizing topological maps and competitive neural networks.<<ETX>>","PeriodicalId":170269,"journal":{"name":"Data Compression Conference, 1992.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Compression Conference, 1992.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1992.227480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The authors discuss a vector quantization strategy which jointly optimizes distortion errors and complexity costs. A maximum entropy estimation of the vector quantization cost function yields an optimal codebook size, the reference vectors and the assignment frequencies. They compare different complexity measures for the design of image compression algorithms which quantize wavelet decomposed images. An online version of complexity optimized vector quantization is implemented by an artificial neural network with winner-take-all connectivity. Their approach establishes a unifying framework for different quantization methods like K-means clustering and its fuzzy version, entropy constrained vector quantization or self-organizing topological maps and competitive neural networks.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂度优化向量量化:一种神经网络方法
作者讨论了一种共同优化失真误差和复杂性代价的矢量量化策略。向量量化代价函数的最大熵估计产生最优码本大小、参考向量和分配频率。他们比较了量化小波分解图像的图像压缩算法设计的不同复杂度度量。采用赢家通吃的人工神经网络实现了复杂度优化矢量量化的在线版本。他们的方法为不同的量化方法建立了一个统一的框架,如k均值聚类及其模糊版本、熵约束向量量化或自组织拓扑映射和竞争神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossless interframe compression of medical images Coding for compression in full-text retrieval systems A comparison of codebook generation techniques for vector quantization Progressive vector quantization of multispectral image data using a massively parallel SIMD machine Parallel algorithms for optimal compression using dictionaries with the prefix property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1