Network-based structure flow estimation

Shu Liu, Nick Barnes, R. Mahony, Haolei Ye
{"title":"Network-based structure flow estimation","authors":"Shu Liu, Nick Barnes, R. Mahony, Haolei Ye","doi":"10.1109/DICTA51227.2020.9363398","DOIUrl":null,"url":null,"abstract":"Structure flow is a novel three-dimensional motion representation that differs from scene flow in that it is directly associated with image change. Due to its close connection with both optical flow and divergence in images, it is well suited to estimation from monocular vision. To acquire an accurate measurement of structure flow, we design a method that employs the spatial pyramid structure and the network-based method. We investigate the current motion field datasets and validate the performance of our method by comparing its two-dimensional component of motion field with the previous works. In general, we experimentally show two conclusions: 1. Our motion estimator employs only RGB images and outperforms the previous work that utilizes RGB-D images. 2. The estimated structure flow map is a more effective representation for demonstrating the motion field compared with the widely-accepted scene flow via monocular vision.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structure flow is a novel three-dimensional motion representation that differs from scene flow in that it is directly associated with image change. Due to its close connection with both optical flow and divergence in images, it is well suited to estimation from monocular vision. To acquire an accurate measurement of structure flow, we design a method that employs the spatial pyramid structure and the network-based method. We investigate the current motion field datasets and validate the performance of our method by comparing its two-dimensional component of motion field with the previous works. In general, we experimentally show two conclusions: 1. Our motion estimator employs only RGB images and outperforms the previous work that utilizes RGB-D images. 2. The estimated structure flow map is a more effective representation for demonstrating the motion field compared with the widely-accepted scene flow via monocular vision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网络的结构流估计
结构流是一种新的三维运动表示形式,它与场景流的不同之处在于它与图像变化直接相关。由于它与图像的光流和散度密切相关,因此非常适合于单目视觉估计。为了获得精确的结构流量测量,我们设计了一种采用空间金字塔结构和基于网络的方法的方法。我们研究了当前的运动场数据集,并通过将其运动场的二维分量与先前的工作进行比较来验证我们的方法的性能。总的来说,我们通过实验得出了两个结论:1。我们的运动估计器仅使用RGB图像,并且优于以前使用RGB- d图像的工作。2. 与目前广泛接受的单目视觉的场景流相比,估计的结构流图能更有效地表示运动场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pixel-RRT*: A Novel Skeleton Trajectory Search Algorithm for Hepatic Vessels M2-Net: A Multi-scale Multi-level Feature Enhanced Network for Object Detection in Optical Remote Sensing Images Using Environmental Context to Synthesis Missing Pixels Automatic Assessment of Open Street Maps Database Quality using Aerial Imagery Temporal 3D RetinaNet for fish detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1