A Visual Analytics Framework for Ocean Scalar Volume Data

Jinyu Li, Tianyi Huang, Ping Hu, W. Cui, Sheng-Hsien Cheng
{"title":"A Visual Analytics Framework for Ocean Scalar Volume Data","authors":"Jinyu Li, Tianyi Huang, Ping Hu, W. Cui, Sheng-Hsien Cheng","doi":"10.34133/olar.0014","DOIUrl":null,"url":null,"abstract":"The processes and phenomena hidden in massive marine data importantly impact heat transportation, material transportation, and climate formation. Visualization can assist people in mining and understanding marine data to gain insight. Thus, oceanographers must study ocean processes and phenomena. However, one remaining challenge in the existing visualization methods is efficiently rendering marine data with large volumes and illustrating the internal structure of marine phenomena. To solve this problem, we propose a new visual analytics framework involving 4 parts for visualizing extensive marine scalar volume data. We first use a single box and double spheres separately as proxy geometries to draw a flat Earth and spherical Earth. Second, we design a new ray-casting algorithm based on graphics processing unit to reduce the volume of marine data. This algorithm accelerates volume rendering by using an adaptive texture sampling rate and step size. Third, we use a depth correction algorithm to accurately restore the ocean scale. Finally, we develop an internal roaming algorithm to observe the internal structure of marine data. In this way, users can dynamically observe the internal structure of marine phenomena. To illustrate the effectiveness of our algorithms, we use them to visualize Hybrid Coordinate Ocean Model data and Argo data.","PeriodicalId":189813,"journal":{"name":"Ocean-Land-Atmosphere Research","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean-Land-Atmosphere Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/olar.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The processes and phenomena hidden in massive marine data importantly impact heat transportation, material transportation, and climate formation. Visualization can assist people in mining and understanding marine data to gain insight. Thus, oceanographers must study ocean processes and phenomena. However, one remaining challenge in the existing visualization methods is efficiently rendering marine data with large volumes and illustrating the internal structure of marine phenomena. To solve this problem, we propose a new visual analytics framework involving 4 parts for visualizing extensive marine scalar volume data. We first use a single box and double spheres separately as proxy geometries to draw a flat Earth and spherical Earth. Second, we design a new ray-casting algorithm based on graphics processing unit to reduce the volume of marine data. This algorithm accelerates volume rendering by using an adaptive texture sampling rate and step size. Third, we use a depth correction algorithm to accurately restore the ocean scale. Finally, we develop an internal roaming algorithm to observe the internal structure of marine data. In this way, users can dynamically observe the internal structure of marine phenomena. To illustrate the effectiveness of our algorithms, we use them to visualize Hybrid Coordinate Ocean Model data and Argo data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋标量体积数据的可视化分析框架
隐藏在海量海洋数据中的过程和现象对热传输、物质传输和气候形成具有重要影响。可视化可以帮助人们挖掘和理解海洋数据,从而获得洞察力。因此,海洋学家必须研究海洋过程和现象。然而,在现有的可视化方法中仍然存在一个挑战,即如何有效地呈现大量海洋数据并说明海洋现象的内部结构。为了解决这一问题,我们提出了一种新的可视化分析框架,该框架包括四个部分,用于可视化大量海洋标量体积数据。我们首先分别使用一个盒子和两个球体作为代理几何图形来绘制平面地球和球形地球。其次,我们设计了一种新的基于图形处理单元的光线投射算法来减少海洋数据的体积。该算法通过自适应纹理采样率和步长来加速体绘制。第三,我们使用深度校正算法精确地恢复海洋尺度。最后,我们开发了一种内部漫游算法来观察海洋数据的内部结构。通过这种方式,用户可以动态地观察海洋现象的内部结构。为了说明我们算法的有效性,我们使用它们来可视化混合坐标海洋模型数据和Argo数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Downward Mediterranean cloudiness beyond Little Ice Age background variability Multifaceted contribution of coccolithophores to ocean carbon export Coastal flood risk and smart resilience evaluation under changing climate Quantitative causality, causality-aided discovery, and causal machine learning Improving Arctic sea-ice thickness estimates with the assimilation of CryoSat-2 summer observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1