Semi-Supervised Learning with Bidirectional Adaptive Pairwise Encoding

Jiangbo Yuan, Jie Yu
{"title":"Semi-Supervised Learning with Bidirectional Adaptive Pairwise Encoding","authors":"Jiangbo Yuan, Jie Yu","doi":"10.1109/ICMLA.2016.0119","DOIUrl":null,"url":null,"abstract":"In contrast to classic supervised learning methods that demand pre-defined class labels, pairwise encoding or side-information encoding merely requires pairwise similarity information to drive feature learning, which makes it very appealing for many fundamental tasks such as dimensionality reduction and semi-supervised learning. In this paper, we present a novel bimarginal pairwise encoding model, along with deep autoencoder, to learn nonlinear embedding for the aforementioned tasks. The new method learns powerful features that preserve critical pairwise information in a semi-supervised manner. It has achieved better performance on the well-known yet hard to make improvement benchmark MINIST compared with other methods in the same category, i.e. Autoencoder [4], Invariant Mapping for Dimensionality Reduction [1], Neighborhood Component Analysis [3], and Fixed Bi-Margin Pairwise Encoding [11].","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In contrast to classic supervised learning methods that demand pre-defined class labels, pairwise encoding or side-information encoding merely requires pairwise similarity information to drive feature learning, which makes it very appealing for many fundamental tasks such as dimensionality reduction and semi-supervised learning. In this paper, we present a novel bimarginal pairwise encoding model, along with deep autoencoder, to learn nonlinear embedding for the aforementioned tasks. The new method learns powerful features that preserve critical pairwise information in a semi-supervised manner. It has achieved better performance on the well-known yet hard to make improvement benchmark MINIST compared with other methods in the same category, i.e. Autoencoder [4], Invariant Mapping for Dimensionality Reduction [1], Neighborhood Component Analysis [3], and Fixed Bi-Margin Pairwise Encoding [11].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双向自适应成对编码的半监督学习
与经典的监督学习方法需要预定义的类标签相比,两两编码或侧信息编码只需要两两相似信息来驱动特征学习,这使得它对于降维和半监督学习等许多基本任务非常有吸引力。在本文中,我们提出了一种新的双边缘成对编码模型,以及深度自编码器,以学习上述任务的非线性嵌入。新方法学习强大的特征,以半监督的方式保留关键的成对信息。与同类方法(Autoencoder[4]、Invariant Mapping for Dimensionality Reduction[1]、Neighborhood Component Analysis[3]、Fixed Bi-Margin Pairwise Encoding[11])相比,该方法在知名但难以改进的基准MINIST上取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1