Alpha matte estimation of natural images using local and global template correspondence

M. Sarim, A. Hilton, Jean-Yves Guillemaut
{"title":"Alpha matte estimation of natural images using local and global template correspondence","authors":"M. Sarim, A. Hilton, Jean-Yves Guillemaut","doi":"10.1109/ICET.2009.5353170","DOIUrl":null,"url":null,"abstract":"Natural image matting is an interesting and difficult problem of computer vision because of its under-constrained nature. It often requires a user interaction, a trimap, to aid the algorithm in identifying the initial definite foreground and background regions. Current techniques use local or global image statistics of these definite regions to estimate the alpha matte for the undefined region. In this paper we propose a novel non-parametric template correspondence approach to estimate the alpha matte. This technique alleviates the problem of previous parametric algorithms that rely solely on colour information and hence are unable to exploit the image structure to their advantage. The proposed technique uses global and local template correspondence, to the definite know regions, to construct the background and foreground layers. Once the foreground and background colours are estimated, the final alpha matte is computed. According to the quantitative analysis against the ground truth, the proposed algorithm outperforms the current state-of-the-art parametric matting techniques.","PeriodicalId":307661,"journal":{"name":"2009 International Conference on Emerging Technologies","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2009.5353170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Natural image matting is an interesting and difficult problem of computer vision because of its under-constrained nature. It often requires a user interaction, a trimap, to aid the algorithm in identifying the initial definite foreground and background regions. Current techniques use local or global image statistics of these definite regions to estimate the alpha matte for the undefined region. In this paper we propose a novel non-parametric template correspondence approach to estimate the alpha matte. This technique alleviates the problem of previous parametric algorithms that rely solely on colour information and hence are unable to exploit the image structure to their advantage. The proposed technique uses global and local template correspondence, to the definite know regions, to construct the background and foreground layers. Once the foreground and background colours are estimated, the final alpha matte is computed. According to the quantitative analysis against the ground truth, the proposed algorithm outperforms the current state-of-the-art parametric matting techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用局部和全局模板对应的自然图像的Alpha哑光估计
自然图像抠图是计算机视觉中一个有趣而又困难的问题,因为它具有无约束的性质。它通常需要一个用户交互,一个trimap,来帮助算法识别最初确定的前景和背景区域。目前的技术使用这些确定区域的局部或全局图像统计来估计未定义区域的alpha哑光。在本文中,我们提出了一种新的非参数模板对应方法来估计alpha matte。这种技术减轻了以前的参数算法的问题,这些算法仅依赖于颜色信息,因此无法利用图像结构来发挥其优势。该方法利用全局模板和局部模板对应,在确定的已知区域内构造背景层和前景层。一旦前景和背景颜色被估计,最终的阿尔法哑光被计算。根据对地面真实度的定量分析,该算法优于当前最先进的参数抠图技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and verification of Two-Phase Commit & Three-Phase Commit Protocols New innovations in healthcare delivery and laparoscopic surgery in Pakistan An invisible dual watermarking scheme for authentication and copyrights protection Efficient metadata loading algorithm for generation and parsing of health level 7 version 3 messages A Self Organizing Map based Urdu Nasakh character recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1