Principle of superposition: a common computational framework for analysis of multiple motion

M. Shizawa, K. Mase
{"title":"Principle of superposition: a common computational framework for analysis of multiple motion","authors":"M. Shizawa, K. Mase","doi":"10.1109/WVM.1991.212811","DOIUrl":null,"url":null,"abstract":"The principle of superposition is applied to various motion estimation problems. It can potentially resolve the difficulty of analyzing multiple motion, transparent motion and motion boundaries by using a common mathematical structure. The authors demonstrate that, by applying the principle, the techniques of optical flow, 3D motion and structure from flow fields, direct method for 3D motion and structure recovery, motion and structure from correspondences in two frames can be extended coherently to deal with multiple motion. The theory not only produces multiple-motion versions of the existing algorithms, but also provides tools for the theoretical analysis of multiple motion. Since the approach is not at the algorithm level as are conventional segmentation paradigms, but at the level of computational theory, i.e. of constraints, theoretical results derived also contribute to psychophysical and physiological studies on the preattentive stages of biological motion vision systems. The paper emphasizes the universality of the principle.<<ETX>>","PeriodicalId":208481,"journal":{"name":"Proceedings of the IEEE Workshop on Visual Motion","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1991.212811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

The principle of superposition is applied to various motion estimation problems. It can potentially resolve the difficulty of analyzing multiple motion, transparent motion and motion boundaries by using a common mathematical structure. The authors demonstrate that, by applying the principle, the techniques of optical flow, 3D motion and structure from flow fields, direct method for 3D motion and structure recovery, motion and structure from correspondences in two frames can be extended coherently to deal with multiple motion. The theory not only produces multiple-motion versions of the existing algorithms, but also provides tools for the theoretical analysis of multiple motion. Since the approach is not at the algorithm level as are conventional segmentation paradigms, but at the level of computational theory, i.e. of constraints, theoretical results derived also contribute to psychophysical and physiological studies on the preattentive stages of biological motion vision systems. The paper emphasizes the universality of the principle.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叠加原理:多运动分析的通用计算框架
叠加原理应用于各种运动估计问题。通过使用一个通用的数学结构,它可以潜在地解决分析多运动、透明运动和运动边界的困难。应用该原理,可以将光流、流场三维运动和结构、三维运动和结构的直接恢复方法、两帧对应的运动和结构等技术进行相干扩展,以处理多运动。该理论不仅产生了现有算法的多运动版本,而且为多运动的理论分析提供了工具。由于该方法不像传统分割范式那样处于算法层面,而是处于计算理论(即约束)的层面,因此得出的理论结果也有助于对生物运动视觉系统的前注意阶段的心理物理和生理研究。本文强调了这一原则的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental estimation of image-flow using a Kalman filter Structure and motion in two dimensions from multiple images: a least squares approach An adaptive multi-scale approach for estimating optical flow: computational theory and physiological implementation Stability of phase information Motion tracking on the spatiotemporal surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1