Blind image deconvolution using the Gaussian scale mixture fields of experts prior

Shuyin Tao, Wen-de Dong, Zhenmin Tang, Qiong Wang
{"title":"Blind image deconvolution using the Gaussian scale mixture fields of experts prior","authors":"Shuyin Tao, Wen-de Dong, Zhenmin Tang, Qiong Wang","doi":"10.1109/PIC.2017.8359540","DOIUrl":null,"url":null,"abstract":"In this paper, a blind image deconvolution method which is derived from Bayesian probabilistic framework is proposed. A robust prior named Gaussian Scale Mixture Fields of Experts (GSM FoE) and a prior that is constructed with the lp-norm (p ≈ 1.5) are adopted to regularize the latent image and the point spread function (PSF) respectively. We use a two phase optimization approach to solve the resulted maximum a-posteriori (MAP) estimation problem, and a simple gradient selecting method is incorporated into the alternating minimization to improve the accuracy of the estimated PSF. Experiments on both synthetic and real world blurred images show that our method can achieve results with high quality.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"391 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a blind image deconvolution method which is derived from Bayesian probabilistic framework is proposed. A robust prior named Gaussian Scale Mixture Fields of Experts (GSM FoE) and a prior that is constructed with the lp-norm (p ≈ 1.5) are adopted to regularize the latent image and the point spread function (PSF) respectively. We use a two phase optimization approach to solve the resulted maximum a-posteriori (MAP) estimation problem, and a simple gradient selecting method is incorporated into the alternating minimization to improve the accuracy of the estimated PSF. Experiments on both synthetic and real world blurred images show that our method can achieve results with high quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用专家先验的高斯尺度混合场对图像进行盲反卷积
本文提出了一种基于贝叶斯概率框架的盲图像反卷积方法。采用Gaussian Scale Mixture Fields of Experts (gsmfoe)鲁棒先验和lp-范数(p≈1.5)构造的先验分别对潜在图像和点扩散函数(PSF)进行正则化。我们使用两阶段优化方法来解决结果的最大后验(MAP)估计问题,并在交替最小化中加入简单的梯度选择方法以提高估计的PSF精度。在合成图像和真实世界模糊图像上的实验表明,该方法可以获得高质量的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation method and decision support of network education based on association rules ACER: An adaptive context-aware ensemble regression model for airfare price prediction An improved constraint model for team tactical position selection in games Trust your wallet: A new online wallet architecture for Bitcoin An approach based on decision tree for analysis of behavior with combined cycle power plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1