A Feasibility Study on Local Hand-crafted Feature Descriptors for Sketch-based Image Retrieval

Muzhaffar Ahmad, S. Setumin, R. Baharudin
{"title":"A Feasibility Study on Local Hand-crafted Feature Descriptors for Sketch-based Image Retrieval","authors":"Muzhaffar Ahmad, S. Setumin, R. Baharudin","doi":"10.1109/ICTSA52017.2021.9406529","DOIUrl":null,"url":null,"abstract":"Image retrieval plays a major role in medical diagnosis, forensic labs, military, crime prevention, and web searching. Most of the image retrieval systems are text-based, but images normally have little or not carry any textual information. The sketch-based Image Retrieval (SBIR) method allows the user to search natural images using freehand sketches instead of text. From the previous investigation, it is found that SBIR may cause the unmatching of the sketches with the database set due to the user’s sketches or the algorithm itself. This work is to study the effectiveness of three local handcrafted descriptors which are Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and Oriented FAST and Brief Descriptor (ORB) for SBIR. It is done by comparing the similarity score between the sketch image and the real image using three different local descriptors. The results demonstrate that each used descriptor produces different matched keypoints and the feature vectors for the similarity measure. To calculate the similarity percentage, Euclidean distance was chosen among the other distance measurement methods. From the results obtained, SIFT has the highest percentage followed by SURF and ORB.","PeriodicalId":334654,"journal":{"name":"2021 International Conference of Technology, Science and Administration (ICTSA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference of Technology, Science and Administration (ICTSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTSA52017.2021.9406529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image retrieval plays a major role in medical diagnosis, forensic labs, military, crime prevention, and web searching. Most of the image retrieval systems are text-based, but images normally have little or not carry any textual information. The sketch-based Image Retrieval (SBIR) method allows the user to search natural images using freehand sketches instead of text. From the previous investigation, it is found that SBIR may cause the unmatching of the sketches with the database set due to the user’s sketches or the algorithm itself. This work is to study the effectiveness of three local handcrafted descriptors which are Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and Oriented FAST and Brief Descriptor (ORB) for SBIR. It is done by comparing the similarity score between the sketch image and the real image using three different local descriptors. The results demonstrate that each used descriptor produces different matched keypoints and the feature vectors for the similarity measure. To calculate the similarity percentage, Euclidean distance was chosen among the other distance measurement methods. From the results obtained, SIFT has the highest percentage followed by SURF and ORB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于草图的局部手工特征描述符检索的可行性研究
图像检索中起着重要作用在医学诊断、法医实验室、军事、预防犯罪和web搜索。大多数图像检索系统都是基于文本的,但图像通常很少或不携带任何文本信息。sketch-based图像检索(SBIR)方法允许用户搜索自然图像使用徒手草图代替文本。从之前的调查,发现SBIR可能会导致不协调的草图与数据库由于用户的草图或算法本身。这个工作是研究的有效性三个当地手工制作的描述符的尺度不变特征变换(筛选),日后健壮的特性(冲浪)和面向SBIR快速简短的描述符(ORB)。它是通过使用三种不同的局部描述符比较素描图像和真实图像之间的相似性得分来完成的。结果表明,每个描述符产生不同的匹配要点和使用特性向量的相似性度量。为了计算相似度百分比,在其他距离度量方法中选择欧几里得距离。从所获得的结果来看,SIFT的百分比最高,其次是SURF和ORB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
E-Band Slotted Microstrip Patch Antenna for 5G Mobile Backhaul Applications Review on Unstructured Peer-to-Peer Overlay Network Applications Performance Analysis of Deep Dense Neural Networks on Traffic Signs Recognition Contention Resolution of Optical Burst Switching for Data Center Survivability of Fiber Wireless (FiWi) Access Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1