Recent trends in big data using hadoop

Chetna Kaushal, D. Koundal
{"title":"Recent trends in big data using hadoop","authors":"Chetna Kaushal, D. Koundal","doi":"10.11591/IJICT.V8I1.PP39-49","DOIUrl":null,"url":null,"abstract":"Big data refers to huge set of data which is very common these days due to the increase of internet utilities. Data generated from social media is a very common example for the same. This paper depicts the summary on big data and ways in which it has been utilized in all aspects. Data mining is radically a mode of deriving the indispensable knowledge from extensively vast fractions of data which is quite challenging to be interpreted by conventional methods. The paper mainly focuses on the issues related to the clustering techniques in big data. For the classification purpose of the big data, the existing classification algorithms are concisely acknowledged and after that, k-nearest neighbor algorithm is discreetly chosen among them and described along with an example. ","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJICT.V8I1.PP39-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Big data refers to huge set of data which is very common these days due to the increase of internet utilities. Data generated from social media is a very common example for the same. This paper depicts the summary on big data and ways in which it has been utilized in all aspects. Data mining is radically a mode of deriving the indispensable knowledge from extensively vast fractions of data which is quite challenging to be interpreted by conventional methods. The paper mainly focuses on the issues related to the clustering techniques in big data. For the classification purpose of the big data, the existing classification algorithms are concisely acknowledged and after that, k-nearest neighbor algorithm is discreetly chosen among them and described along with an example. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用hadoop的大数据的最新趋势
大数据是指庞大的数据集,由于互联网公用事业的增加,这些数据集非常普遍。社交媒体产生的数据就是一个很常见的例子。本文对大数据进行了概述,并介绍了大数据在各个方面的应用。数据挖掘从根本上是一种从大量数据中获取必要知识的模式,这些数据对传统方法来说是相当具有挑战性的。本文主要研究大数据中聚类技术的相关问题。为了对大数据进行分类,对现有的分类算法进行了简要的介绍,然后在其中谨慎地选择了k近邻算法,并结合实例进行了描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review-based analysis of clustering approaches in a recommendation system Adaptive resource allocation in NOMA-enabled backscatter communications systems Navigating the cyber forensics landscape a review of recent innovations ChatGPT's effect on the job market: how automation affects employment in sectors using ChatGPT for customer service Predicting anomalies in computer networks using autoencoder-based representation learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1