The Random Number Partitioning Problem: Overlap Gap Property and Algorithmic Barriers

D. Gamarnik, Eren C. Kizildag
{"title":"The Random Number Partitioning Problem: Overlap Gap Property and Algorithmic Barriers","authors":"D. Gamarnik, Eren C. Kizildag","doi":"10.1109/ISIT50566.2022.9834647","DOIUrl":null,"url":null,"abstract":"We focus on the problem of algorithmically finding a near-optimal solution for the (random) number partitioning problem (NPP), a problem that is of great practical and theoretical significance. The NPP possesses a striking gap between the existential and best algorithmic guarantee: when its input has i.i.d. standard Gaussian entries, the optimal value of NPP is $\\Theta \\left( {\\sqrt n {2^{ - n}}} \\right)$ (w.h.p.); whereas the best polynomial-time algorithm achieves an exponentially worse value of only ${2^{ - \\Theta \\left( {{{\\log }^2}n} \\right)}}$ (w.h.p.). In this paper, we inquire into the origin of this gap by studying the landscape of the NPP through the lens of statistical physics and establish the presence of the Overlap Gap Property (OGP), a topological barrier for large classes of algorithms. We then leverage the OGP to establish that (a) sufficiently stable algorithms fail to find a near-optimal solution with value below $\\left. {{2^{ - \\omega (n\\log - 1/5}}n} \\right)$; and (b) a very natural Monte Carlo Markov Chain dynamics mixes slowly. A technical innovation of our paper is that we consider the overlap structure of m–tuples of near- optimal solutions where m itself grows in n. Our hardness result for stable algorithms is based on a Ramsey-theoretic argument from extremal combinatorics. To the best of our knowledge, this is the first usage of Ramsey Theory to show algorithmic hardness.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We focus on the problem of algorithmically finding a near-optimal solution for the (random) number partitioning problem (NPP), a problem that is of great practical and theoretical significance. The NPP possesses a striking gap between the existential and best algorithmic guarantee: when its input has i.i.d. standard Gaussian entries, the optimal value of NPP is $\Theta \left( {\sqrt n {2^{ - n}}} \right)$ (w.h.p.); whereas the best polynomial-time algorithm achieves an exponentially worse value of only ${2^{ - \Theta \left( {{{\log }^2}n} \right)}}$ (w.h.p.). In this paper, we inquire into the origin of this gap by studying the landscape of the NPP through the lens of statistical physics and establish the presence of the Overlap Gap Property (OGP), a topological barrier for large classes of algorithms. We then leverage the OGP to establish that (a) sufficiently stable algorithms fail to find a near-optimal solution with value below $\left. {{2^{ - \omega (n\log - 1/5}}n} \right)$; and (b) a very natural Monte Carlo Markov Chain dynamics mixes slowly. A technical innovation of our paper is that we consider the overlap structure of m–tuples of near- optimal solutions where m itself grows in n. Our hardness result for stable algorithms is based on a Ramsey-theoretic argument from extremal combinatorics. To the best of our knowledge, this is the first usage of Ramsey Theory to show algorithmic hardness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机数划分问题:重叠间隙性质和算法障碍
本文主要研究了随机数字划分问题(NPP)的近最优解算法问题,这是一个具有重要实际意义和理论意义的问题。NPP在存在性和最佳算法保证之间存在着显著的差距:当其输入有i个标准高斯条目时,NPP的最优值为$\Theta \left( {\sqrt n {2^{ - n}}} \right)$ (w.h.p.);而最佳多项式时间算法的指数差值仅为${2^{ - \Theta \left( {{{\log }^2}n} \right)}}$ (w.h.p.)。在本文中,我们通过统计物理学的视角研究了NPP的景观,探讨了这种差距的起源,并建立了重叠差距属性(OGP)的存在,这是一种大型算法的拓扑障碍。然后,我们利用OGP来确定(a)足够稳定的算法无法找到值低于$\left. {{2^{ - \omega (n\log - 1/5}}n} \right)$的近最优解;(b)一个非常自然的蒙特卡洛马尔可夫链动力学混合缓慢。本文的一个技术创新是我们考虑了近似最优解的m元组的重叠结构,其中m本身在n中增长。我们的稳定算法的硬度结果是基于极值组合学的拉姆齐理论论点。据我们所知,这是第一次使用拉姆齐理论来显示算法的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1