An Enhancement to SIFT-Based Techniques for Image Registration

Md. Tanvir Hossain, S. Teng, Guojun Lu, M. Lackmann
{"title":"An Enhancement to SIFT-Based Techniques for Image Registration","authors":"Md. Tanvir Hossain, S. Teng, Guojun Lu, M. Lackmann","doi":"10.1109/DICTA.2010.39","DOIUrl":null,"url":null,"abstract":"Symmetric-SIFT is a recently proposed local technique used for registering multimodal images. It is based on a well-known general image registration technique named Scale Invariant Feature Transform (SIFT). Symmetric SIFT makes use of the gradient magnitude information at the image’s key regions to build the descriptors. In this paper, we highlight an issue with how the magnitude information is used in this process. This issue may result in similar descriptors being built to represent regions in images that are visually different. To address this issue, we have proposed two new strategies for weighting the descriptors. Our experimental results show that Symmetric-SIFT descriptors built using our proposed strategies can lead to better registration accuracy than descriptors built using the original Symmetric-SIFT technique. The issue highlighted and the two strategies proposed are also applicable to the general SIFT technique.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Symmetric-SIFT is a recently proposed local technique used for registering multimodal images. It is based on a well-known general image registration technique named Scale Invariant Feature Transform (SIFT). Symmetric SIFT makes use of the gradient magnitude information at the image’s key regions to build the descriptors. In this paper, we highlight an issue with how the magnitude information is used in this process. This issue may result in similar descriptors being built to represent regions in images that are visually different. To address this issue, we have proposed two new strategies for weighting the descriptors. Our experimental results show that Symmetric-SIFT descriptors built using our proposed strategies can lead to better registration accuracy than descriptors built using the original Symmetric-SIFT technique. The issue highlighted and the two strategies proposed are also applicable to the general SIFT technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于sift的图像配准技术的改进
对称sift是最近提出的一种用于多模态图像配准的局部技术。它基于一种著名的通用图像配准技术——尺度不变特征变换(SIFT)。对称SIFT利用图像关键区域的梯度幅度信息来构建描述子。在本文中,我们强调了在这个过程中如何使用震级信息的问题。这个问题可能会导致构建类似的描述符来表示图像中视觉上不同的区域。为了解决这个问题,我们提出了两个新的描述符加权策略。我们的实验结果表明,使用我们提出的策略构建的对称- sift描述子比使用原始对称- sift技术构建的描述子具有更好的配准精度。所强调的问题和提出的两种策略也适用于一般的SIFT技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1