A lung cancer lesions dectection scheme based on CT image

Jia Tong, Wei Ying, Wu Cheng Dong
{"title":"A lung cancer lesions dectection scheme based on CT image","authors":"Jia Tong, Wei Ying, Wu Cheng Dong","doi":"10.1109/ICSPS.2010.5555557","DOIUrl":null,"url":null,"abstract":"A new computer-aided detection (CAD) scheme for detecting lung nodules is proposed in this paper. Firstly, the lung region is segmented from the CT data using adaptive threshold algorithm etc; Secondly, building active contour model to segment and remove lung vessel accurately in the lung region; Next, suspicious nodules are detected and omitted renal vessel is filtered using a selective shape filter; Finally, nodule features are extracted and rule-based classifier is used to distinguish true or false positive nodules. Experiment results indicate that this scheme can help radiologist improve the diagnosis efficiency.","PeriodicalId":234084,"journal":{"name":"2010 2nd International Conference on Signal Processing Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS.2010.5555557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A new computer-aided detection (CAD) scheme for detecting lung nodules is proposed in this paper. Firstly, the lung region is segmented from the CT data using adaptive threshold algorithm etc; Secondly, building active contour model to segment and remove lung vessel accurately in the lung region; Next, suspicious nodules are detected and omitted renal vessel is filtered using a selective shape filter; Finally, nodule features are extracted and rule-based classifier is used to distinguish true or false positive nodules. Experiment results indicate that this scheme can help radiologist improve the diagnosis efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于CT图像的肺癌病变检测方案
本文提出了一种新的肺结节计算机辅助检测方案。首先,采用自适应阈值等算法从CT数据中分割肺区域;其次,建立活动轮廓模型,在肺区准确分割和去除肺血管;接下来,检测可疑结节,并使用选择性形状过滤器过滤遗漏的肾血管;最后,提取结节特征,并使用基于规则的分类器区分真阳性和假阳性结节。实验结果表明,该方案可以帮助放射科医生提高诊断效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover page Simulation and character recognition for Plate Marking Machine Syllable segmentation of Telugu document images The characteristics and identification of “oil bright spot” in Chepaizi A general two-dimensional spectrum based on polynomial range model for medium-earth-orbit Synthetic Aperture Radar signal processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1