Energy-aware opcode design

Balaji V. Iyer, Jason A. Poovey, T. Conte
{"title":"Energy-aware opcode design","authors":"Balaji V. Iyer, Jason A. Poovey, T. Conte","doi":"10.1109/ICCD.2008.4751918","DOIUrl":null,"url":null,"abstract":"Embedded processors are required to achieve high performance while running on batteries. Thus, they must exploit all the possible means available to reduce energy consumption while not sacrificing performance. In this work, one technique to reduce energy is explored to intelligently design the instruction-opcodes of a processor based on a target-workload. The optimization is done using a heuristic that not-only minimizes switching between adjacent instructions, but also simplifies the decoding to reduce latches to save dynamic energy. On average, an optimized opcode is able to be decoded using 40-60% less latches in the decoder. In addition, it is shown that a decoder optimized for algorithms that had similar program structure, similar data-types or similar behavior exhibited consistent patterns of energy reduction. The techniques presented in this paper yield an average 10% reduction in the total dynamic energy. It is also shown that this heuristic can be used to achieve similar results on different issue-width processors.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Embedded processors are required to achieve high performance while running on batteries. Thus, they must exploit all the possible means available to reduce energy consumption while not sacrificing performance. In this work, one technique to reduce energy is explored to intelligently design the instruction-opcodes of a processor based on a target-workload. The optimization is done using a heuristic that not-only minimizes switching between adjacent instructions, but also simplifies the decoding to reduce latches to save dynamic energy. On average, an optimized opcode is able to be decoded using 40-60% less latches in the decoder. In addition, it is shown that a decoder optimized for algorithms that had similar program structure, similar data-types or similar behavior exhibited consistent patterns of energy reduction. The techniques presented in this paper yield an average 10% reduction in the total dynamic energy. It is also shown that this heuristic can be used to achieve similar results on different issue-width processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
节能操作码设计
嵌入式处理器需要在电池供电的情况下实现高性能。因此,他们必须利用所有可能的方法来减少能源消耗,同时不牺牲性能。本文探讨了一种基于目标工作负载的处理器指令操作码智能设计的节能技术。优化使用启发式算法,不仅可以最大限度地减少相邻指令之间的切换,还可以简化解码以减少锁存以节省动态能量。平均而言,优化的操作码能够使用解码器中减少40-60%的锁存器进行解码。此外,研究表明,针对具有相似程序结构、相似数据类型或相似行为的算法进行优化的解码器具有一致的节能模式。本文提出的技术使总动态能量平均降低10%。还表明,这种启发式方法可用于在不同的问题宽度处理器上获得类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fine-grain dynamic sleep control scheme in MIPS R3000 Efficiency of thread-level speculation in SMT and CMP architectures - performance, power and thermal perspective Synthesis of parallel prefix adders considering switching activities A floating-point fused dot-product unit Mathematical analysis of buffer sizing for Network-on-Chips under multimedia traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1