Decision tree ensemble hardware accelerators for embedded applications

R. Struharik
{"title":"Decision tree ensemble hardware accelerators for embedded applications","authors":"R. Struharik","doi":"10.1109/SISY.2015.7325359","DOIUrl":null,"url":null,"abstract":"This paper presents four different architectures for the hardware acceleration of axis-parallel, oblique and non-linear decision tree ensemble classifier systems. Hardware architectures for the implementation of a number of ensemble combination rules are also presented. The proposed architectures are optimized for size, making them particularly interesting for embedded applications where the size of the system is critical constraint. Proposed architectures are suitable for the implementation using FPGA and ASIC technology. Experiment results obtained using 29 datasets from the standard UCI Machine Learning Repository database suggest that the FPGA implementations offer significant improvement in the classification time in comparison with the pure software implementations.","PeriodicalId":144551,"journal":{"name":"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2015.7325359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents four different architectures for the hardware acceleration of axis-parallel, oblique and non-linear decision tree ensemble classifier systems. Hardware architectures for the implementation of a number of ensemble combination rules are also presented. The proposed architectures are optimized for size, making them particularly interesting for embedded applications where the size of the system is critical constraint. Proposed architectures are suitable for the implementation using FPGA and ASIC technology. Experiment results obtained using 29 datasets from the standard UCI Machine Learning Repository database suggest that the FPGA implementations offer significant improvement in the classification time in comparison with the pure software implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入式应用的决策树集成硬件加速器
本文提出了轴平行、斜向和非线性决策树集成分类器系统硬件加速的四种不同架构。本文还介绍了实现若干集成组合规则的硬件体系结构。所提出的体系结构针对大小进行了优化,这使得它们对于系统大小是关键约束的嵌入式应用程序特别有趣。所提出的架构适合使用FPGA和ASIC技术实现。使用来自标准UCI机器学习存储库数据库的29个数据集获得的实验结果表明,与纯软件实现相比,FPGA实现在分类时间方面有显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Your constant companion — Engineering students and their mobile phones Weak convergence of sequences of distorted probabilities Composition and calibration of a custom made omnidirectional camera Calibration system for tactile measuring probes From exoskeleton to the Antal Bejczy center for intelligent robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1