Local Descriptors Parameter characterization with Fisher vectors for remote sensing images

Ronald Tombe, Serestina Viriri
{"title":"Local Descriptors Parameter characterization with Fisher vectors for remote sensing images","authors":"Ronald Tombe, Serestina Viriri","doi":"10.1109/ICTAS.2019.8703623","DOIUrl":null,"url":null,"abstract":"Satellite technology yield huge quantities of high spatial resolution(HSR) images periodically. The HSR type of data is complex in its spatial arrangement with high intraclass and low interclass variability. Remote sensing images scene classification is a challenging task due high inter and intra class variations due to diverse scene contents, induced noise as a resultant of changes in illuminations, differing scales and rotations of images. Consequently, no one-specific image descriptor algorithm is effective to characterize scene image-semantics for accurate classification. This research employ Fisher vector to characterize parameters of local descriptors i.e. Local Ternary Patterns (LBPs) and Hu Moments to a high fisher-vector-feature-representation that is more discriminative for remote sensing image scene classification. Support Vector Machine Classifier is implemented to validate the result. Overall results of 52.29 is achieved using the proposed strategy show a significant improvement compared to individual image descriptor algorithms in literature.","PeriodicalId":386209,"journal":{"name":"2019 Conference on Information Communications Technology and Society (ICTAS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Information Communications Technology and Society (ICTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAS.2019.8703623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Satellite technology yield huge quantities of high spatial resolution(HSR) images periodically. The HSR type of data is complex in its spatial arrangement with high intraclass and low interclass variability. Remote sensing images scene classification is a challenging task due high inter and intra class variations due to diverse scene contents, induced noise as a resultant of changes in illuminations, differing scales and rotations of images. Consequently, no one-specific image descriptor algorithm is effective to characterize scene image-semantics for accurate classification. This research employ Fisher vector to characterize parameters of local descriptors i.e. Local Ternary Patterns (LBPs) and Hu Moments to a high fisher-vector-feature-representation that is more discriminative for remote sensing image scene classification. Support Vector Machine Classifier is implemented to validate the result. Overall results of 52.29 is achieved using the proposed strategy show a significant improvement compared to individual image descriptor algorithms in literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部描述子基于Fisher向量的遥感图像参数表征
卫星技术周期性地产生大量高空间分辨率(HSR)图像。高铁类型数据空间排列复杂,类内变异性高,类间变异性低。遥感图像场景分类是一项具有挑战性的任务,由于不同的场景内容、光照变化引起的噪声、图像的不同尺度和旋转导致的类间和类内变化很大。因此,没有一种特定的图像描述符算法能够有效地描述场景图像语义,从而实现准确的分类。本研究利用Fisher向量对局部描述符lbp和Hu矩的参数进行表征,得到了一种判别性更强的Fisher向量特征表示,用于遥感图像场景分类。采用支持向量机分类器对结果进行验证。与文献中单独的图像描述符算法相比,使用该策略获得的总体结果为52.29。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review of Local, Holistic and Deep Learning Approaches in Facial Expressions Recognition Facial Expression Recognition: A Review of Methods, Performances and Limitations Analysis of the Narrow Band Internet of Things (NB-IoT) Technology A Twitter knowledge sharing model based on small businesses in the Western Cape An SDN Solution for Performance Improvement in Dedicated Wide-Area Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1