Color RGB and Structure GLCM Method to Feature Extraction System in Endoscope Image for The Diagnosis Support of Otitis Media Disease

E. Resita, R. Sigit, T. Harsono, Rosydiah Rahmawati
{"title":"Color RGB and Structure GLCM Method to Feature Extraction System in Endoscope Image for The Diagnosis Support of Otitis Media Disease","authors":"E. Resita, R. Sigit, T. Harsono, Rosydiah Rahmawati","doi":"10.1109/IES50839.2020.9231532","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient technique for automatic detection of the tympanic membrane / eardrum in an endoscope image. All this time, the examination of the eardrum is done manually by a doctor to possibility for human errors. Then we need a system to help doctors diagnose the eardrum. The eardrum detection process involves four main steps. First, Preprocessing uses cropping and contrast enhancement to enhance lighting in the image, segmentation uses the grab cut model method to remove all non-eardrum pixels from the image, feature extraction uses RGB-color and GLCM to determine the value of color and texture features in the image and classification for determine the state of the eardrum. To handle ear detection of various ear shapes and sizes (triangular, round, oval and rectangular) and their size automatically adjusts the actual condition of the eardrum, without reducing the value of the image. System accuracy of 92.75 % classification accuracy by comparing the results of the system with the doctor's diagnosis, the RGB-color feature has the greatest effect compared to the texture feature. The proposed technique was tested on the eardrum image database of RSUD Dr. Soetomo consisting of 275 images of various kinds of eardrum conditions.","PeriodicalId":344685,"journal":{"name":"2020 International Electronics Symposium (IES)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Electronics Symposium (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IES50839.2020.9231532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an efficient technique for automatic detection of the tympanic membrane / eardrum in an endoscope image. All this time, the examination of the eardrum is done manually by a doctor to possibility for human errors. Then we need a system to help doctors diagnose the eardrum. The eardrum detection process involves four main steps. First, Preprocessing uses cropping and contrast enhancement to enhance lighting in the image, segmentation uses the grab cut model method to remove all non-eardrum pixels from the image, feature extraction uses RGB-color and GLCM to determine the value of color and texture features in the image and classification for determine the state of the eardrum. To handle ear detection of various ear shapes and sizes (triangular, round, oval and rectangular) and their size automatically adjusts the actual condition of the eardrum, without reducing the value of the image. System accuracy of 92.75 % classification accuracy by comparing the results of the system with the doctor's diagnosis, the RGB-color feature has the greatest effect compared to the texture feature. The proposed technique was tested on the eardrum image database of RSUD Dr. Soetomo consisting of 275 images of various kinds of eardrum conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
彩色RGB和结构GLCM方法在内窥镜图像特征提取系统中的应用,为中耳炎诊断提供支持
本文提出了一种有效的内窥镜图像中鼓膜/鼓膜的自动检测方法。一直以来,鼓膜的检查都是由医生手动完成的,有可能出现人为错误。然后我们需要一个系统来帮助医生诊断鼓膜。鼓膜检测过程包括四个主要步骤。首先,预处理使用裁剪和对比度增强增强图像中的光照,分割使用抓取切割模型方法去除图像中所有非耳膜像素,特征提取使用RGB-color和GLCM确定图像中颜色和纹理特征的值,分类确定耳膜的状态。处理各种耳形和大小(三角形、圆形、椭圆形和矩形)的耳检测,其大小自动调整鼓膜的实际情况,不降低图像值。系统准确率为92.75%,通过将系统的分类准确率结果与医生的诊断结果进行比较,rgb -颜色特征与纹理特征相比效果最大。所提出的技术在RSUD Dr. Soetomo的耳膜图像数据库上进行了测试,该数据库由275张不同类型的耳膜图像组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IES 2020 Cover Page Performance Improvement Based on Modified Lossless Quantization (MLQ) for Secret Key Generation Extracted from Received Signal Strength Performance Analysis of Routing Protocols AODV, OLSR and DSDV on MANET using NS3 Particle Swarm Optimization Implementation as MPPT on Hybrid Power System Data Analytics Implementation for Surabaya City Emergency Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1