Data Analytics on Graphs Part I: Graphs and Spectra on Graphs

L. Stanković, D. Mandic, M. Daković, M. Brajović, Bruno Scalzo, Shengxi Li, A. Constantinides
{"title":"Data Analytics on Graphs Part I: Graphs and Spectra on Graphs","authors":"L. Stanković, D. Mandic, M. Daković, M. Brajović, Bruno Scalzo, Shengxi Li, A. Constantinides","doi":"10.1561/2200000078-1","DOIUrl":null,"url":null,"abstract":"The area of Data Analytics on graphs promises a paradigm shift, as we approach information processing of new classes of data which are typically acquired on irregular but structured domains (such as social networks, various ad-hoc sensor networks). Yet, despite the long history of Graph Theory, current approaches tend to focus on aspects of optimisation of graphs themselves rather than on eliciting strategies relevant to the objective application of the graph paradigm, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. In order to bridge this gap, we first revisit graph topologies from a Data Analytics point of view, to establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral Ljubiša Stanković, Danilo Mandic, Miloš Daković, Miloš Brajović, Bruno Scalzo, Shengxi Li and Anthony G. Constantinides (2020), “Data Analytics on Graphs Part I: Graphs and Spectra on Graphs”, Foundations and Trends © in Machine Learning: Vol. 13, No. 1, pp 1–157. DOI: 10.1561/2200000078-1.","PeriodicalId":431372,"journal":{"name":"Found. Trends Mach. Learn.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2200000078-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The area of Data Analytics on graphs promises a paradigm shift, as we approach information processing of new classes of data which are typically acquired on irregular but structured domains (such as social networks, various ad-hoc sensor networks). Yet, despite the long history of Graph Theory, current approaches tend to focus on aspects of optimisation of graphs themselves rather than on eliciting strategies relevant to the objective application of the graph paradigm, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. In order to bridge this gap, we first revisit graph topologies from a Data Analytics point of view, to establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral Ljubiša Stanković, Danilo Mandic, Miloš Daković, Miloš Brajović, Bruno Scalzo, Shengxi Li and Anthony G. Constantinides (2020), “Data Analytics on Graphs Part I: Graphs and Spectra on Graphs”, Foundations and Trends © in Machine Learning: Vol. 13, No. 1, pp 1–157. DOI: 10.1561/2200000078-1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图上的数据分析第一部分:图和图上的谱
图上的数据分析领域预示着范式的转变,因为我们正在处理通常在不规则但结构化的领域(如社交网络、各种自组织传感器网络)上获得的新类型数据的信息处理。然而,尽管图论有着悠久的历史,目前的方法倾向于关注图本身的优化方面,而不是引出与图范式的客观应用相关的策略,如检测、估计、统计和概率推理、聚类和从图上获得的信号和数据分离。为了弥合这一差距,我们首先从数据分析的角度重新审视图拓扑,通过图拓扑(顶点、连接、指向性)的线性代数形式建立图网络的分类。这是光谱Ljubiša stankoviki, Danilo Mandic, milosi dakoviki, milosi brajoviki, Bruno Scalzo, Shengxi Li和Anthony G. Constantinides(2020),“图上的数据分析第一部分:图上的图和光谱”,机器学习的基础和趋势©:第13卷,第1期,第1 - 157页。DOI: 10.1561 / 2200000078 - 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor Regression Tutorial on Amortized Optimization Machine Learning for Automated Theorem Proving: Learning to Solve SAT and QSAT A unifying tutorial on Approximate Message Passing Reinforcement Learning, Bit by Bit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1