Design and simulation study of Helix Traveling Wave Amplifier for Ku-Band applications

Mehmet İzmir, Agah Oktay Ertay, S. Simsek
{"title":"Design and simulation study of Helix Traveling Wave Amplifier for Ku-Band applications","authors":"Mehmet İzmir, Agah Oktay Ertay, S. Simsek","doi":"10.1109/EMCT.2017.8090359","DOIUrl":null,"url":null,"abstract":"The purpose of this investigation is to present a Ku-Band Helix Traveling Wave Tube Amplifier (TWTA) design and simulation procedure with considering initial design assumptions. The design process which consists of four critical steps is stated. Firstly, required input parameters such as dc beam current (Io), dc beam voltage (Vo) and frequency band of operation are chosen. Determination of the design objectives such as gain and output power constitutes the second stage of the design procedure. For this purpose, overall gain in considered frequency range is specified as over 20 dB. The output power is aimed to 100 W. To obtain design objectives mentioned in the second step, it is necessary to have optimum helix slow wave structure (SWS) design parameters such as helix pitch, radius and pitch angle. Therefore, the optimized design parameters of the SWS are determined by using Eigen Mode Solver (EMS) (cold (beam absent) analysis) of Computer Simulation Technology (CST) Microwave Studio (MWS) for acquiring the beam-wave synchronization. Particle in Cell (PIC) simulation (hot (beam present) analysis) is carried out by assuming the uniform electron beam flow. The length of the interaction structure of the designed TWT is nearly 110 mm and all design objectives are nearly achieved as it is expected. Many crucial figures related to gain, power and beam wave interaction are depicted with detailed explanations. Furthermore, the design limitations of this proposed design due to assumptions are also clarified.","PeriodicalId":104929,"journal":{"name":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCT.2017.8090359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of this investigation is to present a Ku-Band Helix Traveling Wave Tube Amplifier (TWTA) design and simulation procedure with considering initial design assumptions. The design process which consists of four critical steps is stated. Firstly, required input parameters such as dc beam current (Io), dc beam voltage (Vo) and frequency band of operation are chosen. Determination of the design objectives such as gain and output power constitutes the second stage of the design procedure. For this purpose, overall gain in considered frequency range is specified as over 20 dB. The output power is aimed to 100 W. To obtain design objectives mentioned in the second step, it is necessary to have optimum helix slow wave structure (SWS) design parameters such as helix pitch, radius and pitch angle. Therefore, the optimized design parameters of the SWS are determined by using Eigen Mode Solver (EMS) (cold (beam absent) analysis) of Computer Simulation Technology (CST) Microwave Studio (MWS) for acquiring the beam-wave synchronization. Particle in Cell (PIC) simulation (hot (beam present) analysis) is carried out by assuming the uniform electron beam flow. The length of the interaction structure of the designed TWT is nearly 110 mm and all design objectives are nearly achieved as it is expected. Many crucial figures related to gain, power and beam wave interaction are depicted with detailed explanations. Furthermore, the design limitations of this proposed design due to assumptions are also clarified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ku波段螺旋行波放大器的设计与仿真研究
本研究的目的是提出一个ku波段螺旋行波管放大器(TWTA)的设计和仿真过程,并考虑初始设计假设。设计过程包括四个关键步骤。首先,选择直流电流(Io)、直流电压(Vo)和工作频带等输入参数。设计目标(如增益和输出功率)的确定构成了设计过程的第二阶段。为此,在所考虑的频率范围内的总增益被指定为超过20db。输出功率的目标是100w。为了实现第二步的设计目标,需要有最优的螺旋慢波结构(SWS)设计参数,如螺旋螺距、半径和螺距角。因此,利用计算机仿真技术(CST)微波工作室(MWS)的本征模式求解器(EMS)(冷(无束)分析)来确定SWS的优化设计参数,以获取波束波同步。在假设电子束流均匀的情况下,进行了粒子池(PIC)模拟(热(束)分析)。设计的行波管相互作用结构长度接近110 mm,各项设计目标基本达到预期。许多关键数字有关增益,功率和波束波相互作用的描述和详细解释。此外,还澄清了由于假设而导致的设计局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of signal penetration into mock missiles Advanced finite element analysis for EMC engineering Optically transparent frequency selective surface for filtering 2.6 GHz LTE band Full-wave computational analysis of optical chiral metamaterials Electromagnetic shielding behavior of different metallic wire-meshes and thin metal plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1