Water-level reference planning for automated irrigation channels via robust MPC

A. Neshastehriz, M. Cantoni, I. Shames
{"title":"Water-level reference planning for automated irrigation channels via robust MPC","authors":"A. Neshastehriz, M. Cantoni, I. Shames","doi":"10.1109/ECC.2014.6862420","DOIUrl":null,"url":null,"abstract":"In a water-level reference planning problem for automated irrigation channels, the object is to steer the system along trajectories that satisfy hard constraints on the regulated water levels and the flow commands produced by the underlying feedback controllers. The approach proposed here involves nominal trajectories that are devised off-line accounting for a forecast (i.e. schedule) of the demand (i.e. load input). The load actually drawn during operation is inevitably a perturbed version of this schedule. To achieve a level of robustness, insomuch as the deviation from nominal trajectories respects the constraints in the presence of such uncertainty, a Model Predictive Control (MPC) scheme is developed to adjust the nominal reference plan on-line. This receding horizon scheme involves time-varying constraints on the error relative to the nominal trajectories and a novel on-line approach to constraint tightening, which yields a robust feasibility property. Simulation results for a stretch of an automated irrigation channel are discussed.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In a water-level reference planning problem for automated irrigation channels, the object is to steer the system along trajectories that satisfy hard constraints on the regulated water levels and the flow commands produced by the underlying feedback controllers. The approach proposed here involves nominal trajectories that are devised off-line accounting for a forecast (i.e. schedule) of the demand (i.e. load input). The load actually drawn during operation is inevitably a perturbed version of this schedule. To achieve a level of robustness, insomuch as the deviation from nominal trajectories respects the constraints in the presence of such uncertainty, a Model Predictive Control (MPC) scheme is developed to adjust the nominal reference plan on-line. This receding horizon scheme involves time-varying constraints on the error relative to the nominal trajectories and a novel on-line approach to constraint tightening, which yields a robust feasibility property. Simulation results for a stretch of an automated irrigation channel are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒MPC的自动化灌溉渠道水位参考规划
在自动灌溉渠的水位参考规划问题中,目标是引导系统沿着满足对调节水位和底层反馈控制器产生的流量命令的硬约束的轨迹运行。这里提出的方法涉及名义轨迹,该轨迹是根据需求(即负荷输入)的预测(即时间表)离线设计的。在运行期间实际绘制的负载不可避免地是这个时间表的扰动版本。为了达到一定程度的鲁棒性,使得标称轨迹的偏离尊重存在这种不确定性的约束,开发了一种模型预测控制(MPC)方案来在线调整标称参考计划。该方案包含了相对于标称轨迹的时变误差约束和一种新的在线约束收紧方法,具有鲁棒的可行性。讨论了一段自动灌溉渠的模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness under saturated feedback: Strong iISS for a class of nonlinear systems Least squares end performance experiment design in multicarrier systems: The sparse preamble case Multi-model, multi-objective tuning of fixed-structure controllers Control systems on three-dimensional lie groups On solving periodic ℋ2-optimal fault detection and isolation problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1