Spectrum Hole Detection for Cognitive Radio through Energy Detection using Random Forest

Ankit Mishra, V. Dehalwar, Jalpa H. Jobanputra, Mohan Lal Kolhe
{"title":"Spectrum Hole Detection for Cognitive Radio through Energy Detection using Random Forest","authors":"Ankit Mishra, V. Dehalwar, Jalpa H. Jobanputra, Mohan Lal Kolhe","doi":"10.1109/incet49848.2020.9154097","DOIUrl":null,"url":null,"abstract":"The growth of wireless data is the major driving force for an exponential increase in wireless communication. Cognitive Radio is one of the emerging wireless technologies that can be used for smart utility networks. Optimum utilization of the wireless spectrum is the objective of Cognitive Radio. Finding a spectrum hole through intelligent means is essential for the success of Cognitive Radio. Dynamic spectrum allocation is also an efficient technique for spectrum allocation. It will lead to a better spectrum utilization. In this paper, some of the machine learning techniques are used to find a frequency range for dynamic spectrum allocation. Different machine learning techniques such as Logistic Regression, Support Vector Machine, Adaboost Classifier, and Random Forests were used to find spectrum holes in skewed data. Random Forest outperforms all the other models with an accuracy of 91% for determining the spectrum bandwidth (i.e. hole) for Cognitive Radio applications.","PeriodicalId":174411,"journal":{"name":"2020 International Conference for Emerging Technology (INCET)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/incet49848.2020.9154097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The growth of wireless data is the major driving force for an exponential increase in wireless communication. Cognitive Radio is one of the emerging wireless technologies that can be used for smart utility networks. Optimum utilization of the wireless spectrum is the objective of Cognitive Radio. Finding a spectrum hole through intelligent means is essential for the success of Cognitive Radio. Dynamic spectrum allocation is also an efficient technique for spectrum allocation. It will lead to a better spectrum utilization. In this paper, some of the machine learning techniques are used to find a frequency range for dynamic spectrum allocation. Different machine learning techniques such as Logistic Regression, Support Vector Machine, Adaboost Classifier, and Random Forests were used to find spectrum holes in skewed data. Random Forest outperforms all the other models with an accuracy of 91% for determining the spectrum bandwidth (i.e. hole) for Cognitive Radio applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林能量检测的认知无线电频谱空洞检测
无线数据的增长是无线通信呈指数增长的主要驱动力。认知无线电是一种新兴的无线技术,可用于智能公用事业网络。无线频谱的最佳利用是认知无线电的目标。通过智能手段寻找频谱空穴是认知无线电成功的关键。动态频谱分配也是一种有效的频谱分配技术。这将导致更好的频谱利用率。在本文中,使用一些机器学习技术来寻找动态频谱分配的频率范围。不同的机器学习技术,如逻辑回归、支持向量机、Adaboost分类器和随机森林,被用来寻找偏斜数据中的频谱洞。随机森林在确定认知无线电应用的频谱带宽(即空穴)方面优于所有其他模型,准确率为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of DC Parameters of Double Gate Tunnel Field Effect Transistor (DG- TFET) for different Gate Dielectrics An Open-source Framework for Robust Portable Cellular Network Efficiency Comparison of Supervised and Unsupervised Classifier on Content Based Classification using Shape, Color, Texture Improved Divorce Prediction Using Machine learning- Particle Swarm Optimization (PSO) Machine Learning Based Synchrophasor Data Analysis for Islanding Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1