{"title":"Quality and Cost of Deterministic Network Calculus: Design and Evaluation of an Accurate and Fast Analysis","authors":"Steffen Bondorf, Paul Nikolaus, J. Schmitt","doi":"10.1145/3078505.3078594","DOIUrl":null,"url":null,"abstract":"Networks are integral parts of modern safety-critical systems and certification demands the provision of guarantees for data transmissions. Deterministic Network Calculus (DNC) can compute a worst-case bound on a data flow's end-to-end delay. Accuracy of DNC results has been improved steadily, resulting in two DNC branches: the classical algebraic analysis (algDNC) and the more recent optimization-based analysis (optDNC). The optimization-based branch provides a theoretical solution for tight bounds. Its computational cost grows, however, (possibly super-)exponentially with the network size. Consequently, a heuristic optimization formulation trading accuracy against computational costs was proposed. In this paper, we challenge optimization-based DNC with a novel algebraic DNC algorithm. We show that: (1) no current optimization formulation scales well with the network size and (2) algebraic DNC can be considerably improved in both aspects, accuracy and computational cost. To that end, we contribute a novel DNC algorithm that transfers the optimization's search for best attainable delay bounds to algebraic DNC. It achieves a high degree of accuracy and our novel efficiency improvements reduce the cost of the analysis dramatically. In extensive numerical experiments, we observe that our delay bounds deviate from the optimization-based ones by only 1.142% on average while computation times simultaneously decrease by several orders of magnitude.","PeriodicalId":133673,"journal":{"name":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078505.3078594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Networks are integral parts of modern safety-critical systems and certification demands the provision of guarantees for data transmissions. Deterministic Network Calculus (DNC) can compute a worst-case bound on a data flow's end-to-end delay. Accuracy of DNC results has been improved steadily, resulting in two DNC branches: the classical algebraic analysis (algDNC) and the more recent optimization-based analysis (optDNC). The optimization-based branch provides a theoretical solution for tight bounds. Its computational cost grows, however, (possibly super-)exponentially with the network size. Consequently, a heuristic optimization formulation trading accuracy against computational costs was proposed. In this paper, we challenge optimization-based DNC with a novel algebraic DNC algorithm. We show that: (1) no current optimization formulation scales well with the network size and (2) algebraic DNC can be considerably improved in both aspects, accuracy and computational cost. To that end, we contribute a novel DNC algorithm that transfers the optimization's search for best attainable delay bounds to algebraic DNC. It achieves a high degree of accuracy and our novel efficiency improvements reduce the cost of the analysis dramatically. In extensive numerical experiments, we observe that our delay bounds deviate from the optimization-based ones by only 1.142% on average while computation times simultaneously decrease by several orders of magnitude.