Camera Ego-Motion Estimation Using Phase Correlation under Planar Motion Constraint

S. Effendi, R. Jarvis
{"title":"Camera Ego-Motion Estimation Using Phase Correlation under Planar Motion Constraint","authors":"S. Effendi, R. Jarvis","doi":"10.1109/DICTA.2010.38","DOIUrl":null,"url":null,"abstract":"An intelligent robotic living assistive system has become a popular research in the last decade. One of the important topics in that research area is 3D object reconstruction from multiple views. This process may depend on motion estimation using vision. However, often a domestic robot on an electric wheel chair has to move in a steep rotational angle that causes motion estimation from vision to become inaccurate. In addition, an oblique viewing angle creates a perspective distortion to the captured images, which further worsens the estimation result. Hence, in this paper, we propose a new approach by altering the motion estimation problem into a 2D image registration problem. Our method’s accuracy is very close to that of the Scale Invariant Feature Transform (SIFT) features tracker, whereas the Kanade-Lucas-Tomasi (KLT) tracker’s drops as soon as the rotational angle reaches about 40¿. Although our method is 2.7 times slower than the KLT tracker, it is 19 times faster than the SIFT tracker.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An intelligent robotic living assistive system has become a popular research in the last decade. One of the important topics in that research area is 3D object reconstruction from multiple views. This process may depend on motion estimation using vision. However, often a domestic robot on an electric wheel chair has to move in a steep rotational angle that causes motion estimation from vision to become inaccurate. In addition, an oblique viewing angle creates a perspective distortion to the captured images, which further worsens the estimation result. Hence, in this paper, we propose a new approach by altering the motion estimation problem into a 2D image registration problem. Our method’s accuracy is very close to that of the Scale Invariant Feature Transform (SIFT) features tracker, whereas the Kanade-Lucas-Tomasi (KLT) tracker’s drops as soon as the rotational angle reaches about 40¿. Although our method is 2.7 times slower than the KLT tracker, it is 19 times faster than the SIFT tracker.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面运动约束下基于相位相关的摄像机自运动估计
智能机器人生活辅助系统是近十年来研究的热点。该研究领域的一个重要课题是多视角三维物体重建。这个过程可能依赖于使用视觉的运动估计。然而,电动轮椅上的家用机器人通常必须以一个陡峭的旋转角度移动,这导致视觉上的运动估计变得不准确。此外,倾斜的视角会对捕获的图像产生透视畸变,从而进一步恶化估计结果。因此,在本文中,我们提出了一种新的方法,将运动估计问题转化为二维图像配准问题。我们的方法的精度非常接近尺度不变特征变换(SIFT)特征跟踪器的精度,而Kanade-Lucas-Tomasi (KLT)跟踪器的精度在旋转角度达到40°左右时就会下降。虽然我们的方法比KLT跟踪器慢2.7倍,但比SIFT跟踪器快19倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1