Model-Driven Time-Series Analytics

Sabine Wolny, Alexandra Mazak, M. Wimmer, Rafael Konlechner, G. Kappel
{"title":"Model-Driven Time-Series Analytics","authors":"Sabine Wolny, Alexandra Mazak, M. Wimmer, Rafael Konlechner, G. Kappel","doi":"10.18417/EMISA.SI.HCM.19","DOIUrl":null,"url":null,"abstract":"Tackling the challenge of managing the full life-cycle of systems requires a well-defined mix of approaches. While in the early phases model-driven approaches are frequently used to design systems, in the later phases data-driven approaches are used to reason on different key performance indicators of systems under operation. This immediately poses the question how operational data can be mapped back to design models to evaluate existing designs and to reason about future re-designs. In this paper, we present a novel approach for harmonizing model-driven and data-driven approaches. In particular, we introduce an architecture for time-series data management to analyse runtime properties of systems which is derived from design models. Having this systematic generation of time-series data management opens the door to analyse data through design models. We show how such data analytics is specified for modelling languages using standard metamodelling techniques and technologies.","PeriodicalId":186216,"journal":{"name":"Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18417/EMISA.SI.HCM.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tackling the challenge of managing the full life-cycle of systems requires a well-defined mix of approaches. While in the early phases model-driven approaches are frequently used to design systems, in the later phases data-driven approaches are used to reason on different key performance indicators of systems under operation. This immediately poses the question how operational data can be mapped back to design models to evaluate existing designs and to reason about future re-designs. In this paper, we present a novel approach for harmonizing model-driven and data-driven approaches. In particular, we introduce an architecture for time-series data management to analyse runtime properties of systems which is derived from design models. Having this systematic generation of time-series data management opens the door to analyse data through design models. We show how such data analytics is specified for modelling languages using standard metamodelling techniques and technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型驱动时间序列分析
处理管理系统的整个生命周期的挑战需要一个定义良好的方法组合。在早期阶段,模型驱动的方法经常用于设计系统,而在后期阶段,数据驱动的方法用于对运行中的系统的不同关键性能指标进行推理。这立即提出了一个问题,即如何将操作数据映射回设计模型,以评估现有设计并对未来的重新设计进行推理。在本文中,我们提出了一种协调模型驱动和数据驱动方法的新方法。特别地,我们介绍了一种时间序列数据管理体系结构,用于分析从设计模型派生的系统的运行时属性。系统地生成时间序列数据管理为通过设计模型分析数据打开了大门。我们将展示如何使用标准的元建模技术和技术为建模语言指定这种数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Catchword: Blockchains and Enterprise Modeling Decentralized Business Process Control using Blockchain An experience report from two applications: Food Supply Chain and Car Registration Balancing Patient Care and Paperwork Automatic Task Enactment and Comprehensive Documentation in Treatment Processes Process Modeling in Decentralized Organizations Utilizing Blockchain Consensus Blockchain Technologies in Enterprise Modeling and Enterprise Information Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1