Robust weighted coarse-to-fine sparse tracking

Boxuan Zhong, Zijing Chen, Xinge You, Luoqing Li, Y. Xie, Shujian Yu
{"title":"Robust weighted coarse-to-fine sparse tracking","authors":"Boxuan Zhong, Zijing Chen, Xinge You, Luoqing Li, Y. Xie, Shujian Yu","doi":"10.1109/SPAC.2014.6982648","DOIUrl":null,"url":null,"abstract":"Particle filter and sparse representation have been successfully applied to visual tracking in computer vision community. This paper proposes an adaptive weighted coarse-to-fine sparse tracking(WCFT) method based on particle filter framework. In this method, two series of templates, coarse templates and fine templates, are used to represent two different stages of human vision perception process respectively. Besides, the regularization parameter(weight) of each template is adapted according to its significance in representing the target. We also prove that our problem can be solved using an accelerated proximal gradient(APG) method. Moreover, we prove that the outstanding L1 tracker is a special case of our model and our method is more effective and efficient in general. The superiority of our system over current state-of-art tracking methods is demonstrated by a set of comprehensive experiments on public data sets.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Particle filter and sparse representation have been successfully applied to visual tracking in computer vision community. This paper proposes an adaptive weighted coarse-to-fine sparse tracking(WCFT) method based on particle filter framework. In this method, two series of templates, coarse templates and fine templates, are used to represent two different stages of human vision perception process respectively. Besides, the regularization parameter(weight) of each template is adapted according to its significance in representing the target. We also prove that our problem can be solved using an accelerated proximal gradient(APG) method. Moreover, we prove that the outstanding L1 tracker is a special case of our model and our method is more effective and efficient in general. The superiority of our system over current state-of-art tracking methods is demonstrated by a set of comprehensive experiments on public data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒加权粗到细稀疏跟踪
粒子滤波和稀疏表示已经成功地应用于计算机视觉领域的视觉跟踪。提出了一种基于粒子滤波框架的自适应加权粗到细稀疏跟踪方法。该方法采用粗模板和精模板两组模板分别代表人类视觉感知过程的两个不同阶段。此外,每个模板的正则化参数(权值)根据其在表示目标中的重要程度进行调整。我们还证明了我们的问题可以用加速近端梯度(APG)方法来解决。此外,我们证明了优秀的L1跟踪器是我们模型的一个特例,我们的方法在一般情况下更有效和高效。在公共数据集上进行的一组综合实验证明了我们的系统优于当前最先进的跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1