A Circuit-Based SAT Solver for Logic Synthesis

He-Teng Zhang, Jie-Hong R. Jiang, A. Mishchenko
{"title":"A Circuit-Based SAT Solver for Logic Synthesis","authors":"He-Teng Zhang, Jie-Hong R. Jiang, A. Mishchenko","doi":"10.1109/ICCAD51958.2021.9643505","DOIUrl":null,"url":null,"abstract":"In recent years SAT solving has been widely used to implement various circuit transformations in logic synthesis. However, off-the-shelf CNF-based SAT solvers often have suboptimal performance on these challenging optimization problems. This paper describes an application-specific circuit-based SAT solver for logic synthesis. The solver is based on Glucose, a state-of-the-art CNF-based solver and adds a number of novel features, which make it run faster on multiple incremental SAT problems arising in redundancy removal and logic restructuring among others. In particular, the circuit structure of the problem instance is leveraged in a new way to guide variable decisions and to converge to a solution faster for both satisfiable and unsatisfiable instances. Experimental results indicate that the proposed solver leads to a 2-4x speedup, compared to the original Glucose.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In recent years SAT solving has been widely used to implement various circuit transformations in logic synthesis. However, off-the-shelf CNF-based SAT solvers often have suboptimal performance on these challenging optimization problems. This paper describes an application-specific circuit-based SAT solver for logic synthesis. The solver is based on Glucose, a state-of-the-art CNF-based solver and adds a number of novel features, which make it run faster on multiple incremental SAT problems arising in redundancy removal and logic restructuring among others. In particular, the circuit structure of the problem instance is leveraged in a new way to guide variable decisions and to converge to a solution faster for both satisfiable and unsatisfiable instances. Experimental results indicate that the proposed solver leads to a 2-4x speedup, compared to the original Glucose.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电路的逻辑综合SAT求解器
近年来,SAT求解被广泛应用于逻辑综合中的各种电路变换。然而,现成的基于cnf的SAT求解器在这些具有挑战性的优化问题上往往表现不佳。本文介绍了一种基于专用电路的逻辑综合SAT求解器。该求解器基于葡萄糖,这是一种最先进的基于cnf的求解器,并增加了许多新功能,这使得它在冗余删除和逻辑重构等多个增量SAT问题上运行得更快。特别是,以一种新的方式利用问题实例的电路结构来指导变量决策,并更快地收敛到可满足和不可满足实例的解决方案。实验结果表明,与原来的葡萄糖相比,所提出的求解器的速度提高了2-4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1