{"title":"Sensor planning for object pose estimation and identification","authors":"Jeremy Ma, J. Burdick","doi":"10.1109/ROSE.2009.5355995","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach to sensor planning for simultaneous object identification and 3D pose estimation. We consider the problem of determining the next-best-view for a movable sensor (or an autonomous agent) to identify an unknown object from among a database of known object models. We use an information theoretic approach to define a metric (based on the difference between the current and expected model entropy) that guides the selection of the optimal control action. We present a generalized algorithm that can be used in sensor planning for object identification and pose estimation. Experimental results are also presented to validate the proposed algorithm.","PeriodicalId":107220,"journal":{"name":"2009 IEEE International Workshop on Robotic and Sensors Environments","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Robotic and Sensors Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2009.5355995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes a novel approach to sensor planning for simultaneous object identification and 3D pose estimation. We consider the problem of determining the next-best-view for a movable sensor (or an autonomous agent) to identify an unknown object from among a database of known object models. We use an information theoretic approach to define a metric (based on the difference between the current and expected model entropy) that guides the selection of the optimal control action. We present a generalized algorithm that can be used in sensor planning for object identification and pose estimation. Experimental results are also presented to validate the proposed algorithm.