{"title":"Network sensor management for tracking and localization","authors":"A. Hero, C. Kreucher","doi":"10.1109/ICIF.2007.4408181","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of sensor management for a large network of agile sensors. Sensor management refers to the process of dynamically retasking agile sensors in response to an evolving environment. Sensors may be agile in a variety of ways, e.g., the ability to reposition, point an antenna, choose sensing mode, or waveform. The goal of sensor management in a large network is to choose actions for individual sensors dynamically so as to maximize overall network utility. Sensor management in the multiplatform setting is a challenging problem for several reasons. First, the state space required to characterize an environment is typically of very high dimension and poorly represented by a parametric form. Second, the network must simultaneously address a number of competing goals. Third, the number of potential taskings grows exponentially with the number of sensors. Finally, in low communication environments, decentralized methods are required. The approach we present addresses these challenges through a novel combination of particle filtering for nonparametric density estimation, information theory for comparing actions, and physicomimetics for computational tractability. The efficacy of the method is illustrated in a realistic surveillance application by simulation, where an unknown number of ground targets are to be detected and tracked by a network of mobile sensors.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper addresses the problem of sensor management for a large network of agile sensors. Sensor management refers to the process of dynamically retasking agile sensors in response to an evolving environment. Sensors may be agile in a variety of ways, e.g., the ability to reposition, point an antenna, choose sensing mode, or waveform. The goal of sensor management in a large network is to choose actions for individual sensors dynamically so as to maximize overall network utility. Sensor management in the multiplatform setting is a challenging problem for several reasons. First, the state space required to characterize an environment is typically of very high dimension and poorly represented by a parametric form. Second, the network must simultaneously address a number of competing goals. Third, the number of potential taskings grows exponentially with the number of sensors. Finally, in low communication environments, decentralized methods are required. The approach we present addresses these challenges through a novel combination of particle filtering for nonparametric density estimation, information theory for comparing actions, and physicomimetics for computational tractability. The efficacy of the method is illustrated in a realistic surveillance application by simulation, where an unknown number of ground targets are to be detected and tracked by a network of mobile sensors.